

SWITCHING THEORY AND LOGIC DESIGN

 COURSEFILE

Coursefile contents:

1. Cover Page

2. Syllabus copy

3. Vision of the department

4. Mission of the department

5. PEOs and POs

6. Course objectives and outcomes

7. Brief note on the importance of the course and how it fits in to the curriculum

8. Prerequisites

9. Instructional Learning Outcomes

10. Course mapping with PEOs and POs

11. Class Time Table

12. Individual Time Table

13. Lecture schedule with methodology being used/adopted

14. Detailed notes

15. Additional/missing topics

16. University previous Question papers

17. Question Bank

18. Assignment topics

19. Unit wise questions

20. Tutorial problems

21. Known gaps

22. Discussion topics

23. References, Journals, websites and E-links

24. Quality measurement Sheets

 a. course and survey

 b. Teaching evaluation

25. Student List

26. GroupWise Student List for discussion topics

GEETHANJALI COLLEGE OF ENGINEERING AND TECHNOLOGY

DEPARTMENT OF Electrical and Electronics Engineering

(Name of the Subject / Lab Course) : Switching Theory and Logic Design

 (JNTU CODE –A40407) Programme : UG

Branch: Electrical and Electronics Engineering Version No : 01

 Year: II year Generated on : 05/11/15

Semester: II-Sem No. of pages :

Classification status (Unrestricted / Restricted)

Distribution List :

Prepared by : 1) Name : D.Radhika, 1) Name :

 2) Sign : 2) Sign :

 3) Design : Assoc. Prof 3) Design :

 4) Date : 05/11/2015 4) Date :

Verified by : 1) Name :

 2) Sign :

 3) Design :

 4) Date :

* For Q.C Only.

1) Name :

2) Sign :

3) Design :

4) Date :

Approved by : (HOD) 1) Name :

 2) Sign :

 3) Date :

2. Syllabus copy

JAWAHARLAL NEHRU TECHNOLOGIVAL UNIVERSITY HYDERABAD

II Year B.Tech. EEE –II Sem L T/ P/ D C
 4 -/ - / - 4

SWITCHING THEORY AND LOGIC DESIGN

UNIT I

NUMBER SYSTEMS AND BOOLEAN ALGEBRA AND SWITCHING FUNCTIONS: Number

systems: Base Conversion Methods, Complement of Numbers, Codes - Binary codes, Binary Coded

Decimal code and its properties, Unit distance codes, Alpha Numeric codes, Error detecting and

correcting codes.

Boolean Algebra: Basic theorems and properties

Switching Functions: Canonical and Standard forms, Algebraic simplification of digital logic gates,

Properties of XOR gates , Universal gates, Multilevel NAND/NOR realizations.

UNIT II

MINIMIZATION AND DEGIN OF COMBINATIONAL CIRCUITS: Introduction, The

Minimization with theorem, The Karnaugh Map Method, Five and Six variable Maps, Prime and

Essential Implications, Don’t care Map entries, Using the maps for Simplifying, Tabular method, Partially

specified Expressions, Multi-Output Minimization, Minimization and combinational Design, Arithmetic

Circuits, Comparator, Multiplexers, Code Converters, Wired Logic, Tristate Bus system, Practical

Aspects related to Combinational Logic Design, Hazards and Hazard Free Relations.

UNIT III

SEQUENCTIAL MACHINES FUNDAMENTALS: Introduction, Basic Architectural Distinctions

between Combinational and Sequential circuits, the Binary Cell, Fundamentals of Sequential Machine

Operation, The Flip-Flop, The D- Latch Flip-Flop, the Clocked T Flip-Flop, the clocked J-K Flip-Flop,

Design of a clocked Flip-flop, conversion from one Type of Flip-Flop to another, Timing and Triggering

considerations, Clock skew.

UNIT IV

SEQUENTIAL CIRCUITS DESIGN AND ANALYSIS: Introduction, State diagram, Analysis of

Synchronous Sequential Circuits, Approaches to the Design of Synchronous sequential Finite State

Machines, Design Aspects, State Reduction, Design Steps, Realization using Flip-Flops.

Counters: Design Of Single Mode Counters; Ripple Counter, Ring Counter, Shift Register, Shift

Register Sequences, Ring Counter using Shift Register.

UNIT V

SEQUENTIAL CIRCUITS : Finite state machine-capabilities and limitations, Mealy and Moore

models-minimization of completely specified and incompletely specified sequential machines, Partition

techniques and Merger chart methods-concept of minimal cover table.

ALGOROTHIMIC STATE MACHINES : Salient features of the ASM chart-Simple examples-System

design using data path and control subsystems-control implementations-examples of Weighing machine

and Binary multiplier.

TEXT BOOKS :
1. Switching & Finite Automata theory – Zvi Kohavi and Neeraj K Jha, ,3rd Edition, Cambridge.

2. Digital Design – Morris Mano, PHI, 3rd Edition.

REFERENCE BOOKS:
1. Introduction to Switching Theory and Logic Design – Fredriac J Hill, Gerald R Peterson, 3rd Edition,

John Willey and Sons Inc,

2. Digital Fundamentals – A Systems approach – Thomas L Floyd, Pearson, 2013.

3. Digital Logic Design – Ye Brian and HoldsWorth, Elsevier

4. Fundamentals of Logic Design – Charles H. Roth, Thomson Publications, 5th Edition, 2004

5. Digital Logic Applications and Design – John M. Yarbrough, Thomson Publications, 2006

6. Digital logic and state machine design – Comer, 3rd, Oxford 2013.

3. Vision of EEE

To provide excellent Electrical and electronics education by building strong teaching and research environment

4. Mission of EEE

To offer high quality graduate program in Electrical and Electronics education and to prepare students for

professional career or higher studies. The department promotes excellence in teaching, research, collaborative

activities and positive contributions to society

5.1 PROGRAM EDUCATIONAL OBJECTIVES

PEO 1. Graduates will excel in professional career and/or higher education by acquiring knowledge in

Mathematics, Science, Engineering principles and Computational skills.

PEO 2. Graduates will analyze real life problems, design Electrical systems appropriate to the requirement that

are technically sound, economically feasible and socially acceptable.

PEO 3.Graduates will exhibit professionalism, ethical attitude, communication skills, team work in their

profession, adapt to current trends by engaging in lifelong learning and participate in Research & Development.

5.2 PROGRAM OUTCOMES

The Program Outcomes of UG in Electrical and Electronics Engineering are as follows

PO 1. An ability to apply the knowledge of Mathematics, Science and Engineering in Electrical and

Electronics Engineering.

PO 2. An ability to design and conduct experiments pertaining to Electrical and Electronics Engineering.

PO 3. An ability to function in multidisciplinary teams

PO 4. An ability to simulate and determine the parameters such as nominal voltage current, power and

associated attributes.

PO 5. An ability to identify, formulate and solve problems in the areas of Electrical and Electronics

Engineering.

PO 6. An ability to use appropriate network theorems to solve electrical engineering problems.

PO 7. An ability to communicate effectively.

PO 8. An ability to visualize the impact of electrical engineering solutions in global, economic and societal

context.

PO 9. Recognition of the need and an ability to engage in life-long learning.

PO 10 An ability to understand contemporary issues related to alternate energy sources.

PO 11 An ability to use the techniques, skills and modern engineering tools necessary for Electrical

Engineering Practice.

PO 12 An ability to simulate and determine the parameters like voltage profile and current ratings of

transmission lines in Power Systems.

PO 13 An ability to understand and determine the performance of electrical machines namely speed, torque,

efficiency etc.

PO 14 An ability to apply electrical engineering and management principles to Power Projects.

6.1 COURSE OBJECTIVES

S.No Objectives

1 To learn basic tools for the design of digital circuits and fundamental concepts used in the design of digital systems

2

To Understand common forms of number representation in digital electronic circuits and to be able to convert

between different representations.

3
To implement simple logical operations using combinational logic circuits

4 To design combinational logic circuits, sequential logic circuits

5 To impart to student the concepts of sequential circuits, enabling them to analyze sequential systems interms of state

machines.

6 To implement synchronous state machines using flip flops.

6.2 COURSE OUTCOMES

S.No.
Outcome

1 Able to manipulate numeric information in different forms, e.g. different bases, signed integers, various

codes such as ASCII, gray, and BCD.

2 Able to manipulate simple Boolean expressions using the theorems and postulates of Boolean algebra and

to minimize combinational functions.

3 Able to design and analyze small combinational circuits and to use standard combinational

functions/building blocks to build larger more complex circuits.

4 Able to design and analyze small sequential circuits and devices and to use standard sequential

functions/building blocks to build larger more complex circuits.

7. BRIEF NOTE ON THE IMPORTANE OF THE COURSE:

a. This Course provides in-depth knowledge of switching theory and design techniques of digital

circuits, which is the basis for design of any digital circuit.

b. This subject is required to understand the later subjects like LDICA, MPMC, VLSI& ES, etc.

c. By studying this subject, the students can design and understand digital systems and its

importance.

d. The students logical thinking capability will be improved which will help in placements and in

their future technical assignments.

8. PREREQUISITES:

1. Set theory (Mathematics)

2. Basic logic operations like bit wise operations, Shift operations, flow charts, ASCII codes, etc.

(Computer Programming)

9. INSTRUCTIONAL LEARNING OUTCOMES

UNIT-I

Sl

No.

Module Outcomes

1

Number System and

Boolean Algebra and

Switching Functions

Able to Know different number systems

2 Able to do Conversion Operations between different

number systems

3 Able to know basic theorems and properties used in

Boolean algebra

4 Designs different logic circuits using different logic

gates

5 Designs multilevel realization functions

UNIT-II

Sl

No.

Module Outcomes

1

Minimization and Design

of Combinational Circuits

Able to get basic information in the design of

combinational circuits

2 Able to solve and analyze Karnaugh Maps

3 Designs Combinational multi level circuits

4 Able to know the operation of Multiplexers and other

arithmetic circuits

5 Can perform practical’s with combinational logic

circuits

UNIT-III

Sl

No.

Module Outcomes

1

Sequential machines

fundamentals

Able to identify architectural differences in

combinational and sequential circuits

2 Able to design sequential circuits for machine

operation

3 Able to design Clocked flip flops

4 Makes use of timing and triggering circuits with

sequential logics

UNIT-IV

Sl

No.

Module Outcomes

1

Sequential circuit design

and analysis

Able to draw state diagrams

2 Able to analyze synchronous sequential circuits

3 Designs sequential finite state machines

4 Designs different types of counters and registers

UNIT-V

Sl

No.

Module Outcomes

1

Sequential circuits and

algorithmic state machines

Able to identify capabilities and limitations of finite

state machine

2 Able to know Mealy and Moore minimization

models

3 Able to know partition techniques and merger chart

methods

4 Able to know about concept of minimal cover table

5 Able to design any system using data path and

controls subsystems

6 Knows the control logics of weighing machine and

binary multiplier

10. Course mapping with PEOs and POs
Mapping of Course with Programme Educational Objectives:

S.No Course

component

code course Semester PEO 1 PEO 2 PEO 3

1
Digital

Electronics
 STLD II √ √

Mapping of Course outcomes with Programme outcomes:

*When the course outcome weightage is < 40%, it will be given as moderately correlated (1).

*When the course outcome weightage is >40%, it will be given as strongly correlated (2).

POs 1 2 3 4 5 6 7 8 9 10 11 12 13

D
ig

it
a
l

S
y
st

em
s

STLD 2 2 2 1 2 1 1 2 2 2

CO 1:

 a. Explain different

Number Systems,

Codes and their

Conversions.

b. Explain Error

Detecting & Error

Correcting Codes

c. Solve typical

problems on the above.

2 2 2 1 2 1 1 2 2 2

CO 2:

Represent the given

Boolean / Switching

functions in various

forms, prove Boolean

Theorems, and

minimize Boolean

functions using these

Theorems. Realize

Switching functions

using basic logic

gates/universal gates.

2 2 2 1 2 1 1 2 2 2

CO 3:

a. Minimize the given

Switching functions in

SoP and PoS forms

using K-Map.

b. Given a switching a

function, generate the

set of Prime Implicants

using Tabular Method

and minimize the

function.

2 2 2 1 2 1 1 2 2 2

CO 4:

Design the different

types of combinational

logic circuits.

2 2 2 1 2 1 1 2 2 2

CO 5:

Design combinational

logic circuits using

different types of PLDs,

2 2 2 1 2 1 1 2 2 2

namely, PROM, PLA

and PAL.

CO 6:

Design different types

of synchronous

sequential logic

circuits.

2 2 2 1 2 1 1 2 2 2

CO 7:

Design fundamental

mode and pulse mode

asynchronous

sequential machines.

2 2 2 1 2 1 1 2 2 2

CO 8:

Design digital systems

using ASM Charts.

2 2 2 2 1 1 2 2 2

Geethanjali College of Engineering & Technology

Department of Electrical & Electronics Engineering

Year/Sem/Sec: II-B. Tech-II Sem(Version-0) Room No: Acad Year 2015-16, WEF: 07-12-2015

Class Teacher: Mrs.D.Radhika

Time
09.30-
10.20

10.20-
11.10

11.10-
12.00

12.00-12.50
12.50-
13.30

13.30-14.20 14.20-15.10 15.10-16.00

Period 1 2 3 4

L
U

N
C

H

5 6 7

Monday EC NT EM-II PS-I MEFA
CACHE/SPORTS/

LIBRARY/
MENTORING

Tuesday STLD NT CRT MEFA EM-II EC

Wednesday PS-I STLD NT EM-II ECS/EM-I LAB

Thursday NT EM-II* PS-I STLD ECS/EM-I LAB

Friday EM-II EC STLD NT MEFA EC PS-I

Saturday STLD PS-I EC MEFA GENDER SENSITIZATION

No Subject(T/P) Faculty Name Mobile No Periods/Week

1 Network Theory (A40213) Dr.S.Radhika 4+1*-Periods

2
Switching Theory and Logic Design

(A40407)
Mrs.D.Radhika 4+1*-Periods

3 Electrical Machines-II (A40212) Mr.G.Srikanth/Mrs.D.Radhika 4+1*-Periods

4 Power Systems-I (A40214) Mr.N.Santhinath 4+1*-Periods

5 Manegerial Eeconomics and Financial Mrs.B.P.S.Jyothi 4-Periods

Analysis (A40010)

6 Electronic Circuits (A40413) Mrs.B.Mamatha 4+1*-Periods

7 GENDER SENSITIZATION Mr.N.V.Bharadwaj 3-Periods

8 Electrical Machines-I LAB (A40287)
Santhinath/Rakesh/Srikanth/NV

Bharadwaj
 3+3-Periods

9
Electrical Circuits and Simulation LAB

(A40286)
D.Krishna/D.Radhika/Dr.S.Radhika

 3+3-
Periods

10
CACHE/LIBRARY/SPORTS/MENTORING

2
PERIODS

11 Campus Recruitment Training

2

Periods

*- Tutorial

 Date: 3/12/2015 Dept. Coord:___________

HOD:_______________DeanAcad:_______________Principal:_________________

13. Lecture schedule with methodology being used / adopted

SL.No. Unit

No.

Total

No. of

Periods

Week

No.

Topic to be covered

in One lecture

Regular/

Additional

Teaching aids

used

LCD/OHP/BB

Remarks

1 I WEEK 1 Introduction to switching

theory and logic design
Regular BB

2 Number Systems Regular BB

3 Number base conversions Regular BB

4 Complement of numbers Regular BB

 TUTORIAL

5 Binary Codes, Binary

Coded Decimal Code and its

properties

Regular BB

6 WEEK 2 Unit Distance Codes, Alpha

Numeric Codes
Regular BB

7 Error Detecting &

correcting codes
Regular BB

8 Tutorial class Regular BB

8 Fundamental & postulates

of Boolean algebra
Regular BB

9 Theorems and properties Regular BB

10 WEEK 3 Switching functions Regular BB

11 Canonical & standard forms Regular BB

 TUTORIAL

12 Algebraic simplification of

digital logic gates
Regular BB

13 Inhibit circuits Additional BB

16 Propertiesof XOR Gates,

Universal Gates
 BB

17 WEEK 4 Multi-level NAND/NOR

Realizations
Regular BB

18 II Minimization with theorems Regular BB

 TUTORIAL

19 k-Map Method Regular BB

20 Five and Six variable Maps Regular BB

21 Prime and Essential Prime

Implications, Don’t Care

Map Entries

Regular BB

22 WEEK 5 Tabular Method Regular BB

 TUTORIAL

23 Partially Specified

Expressions
Regular BB

24 Multi-output Minimization Regular BB

25 Combinational Design:

Arithmetic Circuits
Regular BB

26 Comparator Regular BB

27 WEEK 6 Multiplexers Regular BB

28 Code Converters Regular BB

 TUTORIAL

29 Wired Logic, Tri-state Bus

Systems
Additional BB

30 Practical Aspects related to

combinational Logic design
Regular BB

31 TUTORIAL Regular BB

32 III WEEK 7 Sequential Machine

Fundamentals - introduction
Regular BB

33 Basic architectural

distinctions between

combinational and

sequential circuits

Regular BB

34 Binary Cell, fundamentals

of sequential machine

operation

Regular BB

35 Flip-flop and types of flip-

flops
Regular BB

36 D- Latch Flip-flop Regular BB

37 WEEK 8 Tutorials Regular BB

38 Regular BB

39 BB

40 VI 9

41 Regular BB

42 WEEK 9 Regular BB

43 Regular BB

44 Regular BB

45 Additional BB

46 BB

47 B.TECH I-MID

INTERNAL

EXAMINATIONS

48 WEEK 10

49 V Regular BB

50 Regular BB

51 Regular BB

52 Regular BB

53 WEEK 11

(15TH SEP

TO 21ST

SEP)

 Regular BB

54 BB

55

56 Regular BB

57 Regular BB

58 WEEK 12 Regular BB

59 Regular BB

60 Additional BB

61 BB

62 BB

63

14. Detailed Notes

Digital and Analog Signals

Signals carry information and are defined as any physical quantity that varies with time, space, or any other

independent variable. For example, a sine wave whose amplitude varies with respect to time or the motion of a

particle with respect to space can be considered as signals. A system can be defined as a physical device that

performs an operation on a signal. For example, an amplifier is used to amplify the input signal amplitude. In this

case, the amplifier performs some operation(s) on the signal, which has the effect of increasing the amplitude of the

desired information-bearing signal.

Signals can be categorized in various ways; for example discrete and continuous time domains. Discrete-time

signals are defined only on a discrete set of times. Continuous-time signals are often referred to as continuous

signals even when the signal functions are not continuous; an example is a square-wave signal.

Figure 1a: Analog Signal

Figure 1b : Digital Signal
 Another category of signals is discrete-valued and continuous-valued or otherwise known as digital and analog signals.

Digital signals are discrete-valued and analog signals are continuous electrical signals that vary in time as shown in Figure

1 (a) and (b). Analog devices and systems process signals whose voltages or other quantities vary in a continuous manner.

They can take on any value across a continuous range of voltage, current, or other metric. The analog signals can have an

infinite number of values. Analog systems can be called wave systems. They have a value that changes steadily over time

and can have any one of an infinite set of values in a range. Analog signals represent some physical quantity and they can

be a model of the real quantity. Most of the time, the variations corresponds to that of the non-electric (original) signal.

For example, the telephone transmitter converts the sounds into an electrical voltage signal. The intensity of the voice

causes electric current variations. Therefore, the two are analogous hence the name analog. At the receiving end, the

signal is reproduced in the same proportion. Hence the electric current is a model and is an electrical representation of

one's voice.

Not all analog signals vary as smoothly as the waveform shown in Fig 1(a). Digital signals are non-continuous, they

change in individual steps. They consist of pulses or digits with discrete levels or values. The value of each pulse is

constant, but there is an abrupt change from one digit to the next. Digital signals have two amplitude levels. The value of

which are specified as one of two possibilities such as 1 or 0, HIGH or LOW , TRUE or FALSE and so on. In reality, the

values are anywhere within specific ranges and we define values within a given range.

 A digital system is the one that handles only discrete values or signals. Any set that is restricted to a finite number of

elements contains discrete information. The word digital describes any system based on discontinuous data or events.

Digital is the method of storing, processing and transmitting information through the use of distinct electronic pulses that

represent the binary digits 0 and 1. Examples of discrete sets are the 10 decimal digits, the 26 letters of the alphabet etc. A

digital system would be to flick the light switch on and off. There's no 'in between' values.

Advantages of digital signals
The usual advantages of digital circuits when compared to analog circuits are:

Noise Margin (resistance to noise/robustness) : Digital circuits are less affected by noise. If the noise is below a certain

level (the noise margin), a digital circuit behaves as if there was no noise at all. The stream of bits can be reconstructed

into a perfect replica of the original source. However, if the noise exceeds this level, the digital circuit cannot give correct

results.

Error Correction and Detection : Digital signals can be regenerated to achieve lossless data transmission, within certain

limits. Analog signal transmission and processing, by contrast, always introduces noise.

Easily Programmable : Digital systems interface well with computers and are easy to control with software. It is often

possible to add new features to a digital system without changing hardware, and to do this remotely, just by uploading

new software. Design errors or bugs can be worked-around with a software upgrade, after the product is in customer

hands. A digital system is often preferred because of (re-)programmability and ease of upgrading without requiring

hardware changes.

Cheap Electronic Circuits : More digital circuitry can be fabricated per square millimeter of integrated-circuit material.

Information storage can be much easier in digital systems than in analog ones. In particular, the great noise-immunity of

digital systems makes it possible to store data and retrieve it later without degradation. In an analog system, aging and

wear and tear will degrade the information in storage, but in a digital system, as long as the wear and tear is below a

certain level, the information can be recovered perfectly. Theoretically, there is no data-loss when copying digital data.

This is a great advantage over analog systems, which faithfully reproduce every bit of noise that makes its way into the

signal.

Disadvantages The world in which we live is analog, and signals from this world such as light, temperature, sound,

electrical conductivity, electric and magnetic fields, and phenomena such as the flow of time, are for most practical

purposes continuous and thus analog quantities rather than discrete digital ones. For a digital system to do useful things in

the real world, translation from the continuous realm to the discrete digital realm must occur, resulting in quantization

errors. This problem can usually be mitigated by designing the system to store enough digital data to represent the signal

to the desired degree of fidelity. The Nyquist-Shannon sampling theorem provides an important guideline as to how much

digital data is needed to accurately portray a given analog signal.

Digital systems can be fragile, in that if a single piece of digital data is lost or misinterpreted, the meaning of large blocks

of related data can completely change. This problem can be diminished by designing the digital system for robustness. For

example, a parity bit or other error-detecting or error-correcting code can be inserted into the signal path so that minor

data corruptions can be detected and possibly corrected.

Digital circuits use more energy than analog circuits to accomplish the same calculations and signal processing tasks, thus

producing more heat as well. In portable or battery-powered systems this can be a major limiting factor.

Digital circuits are made from analog components, and care has to be taken to all noise and timing margins, to parasitic

inductances and capacitances, to proper filtering of power and ground connections, to electromagnetic coupling amongst

data lines. Inattention to these can cause problems such as "glitches", pulses do not reach valid switching (threshold)

voltages, or unexpected ("undecoded") combinations of logic states.

A corollary of the fact that digital circuits are made from analog components is the fact that digital circuits are slower to

perform calculations than analog circuits that occupy a similar amount of physical space and consume the same amount of

power. However, the digital circuit will perform the calculation with much better repeatability, due to the high noise

immunity of digital circuitry.

Number Systems

Introduction

Number systems provide the basis for all operations in information processing systems. In a number system the

information is divided into a group of symbols; for example, 26 English letters, 10 decimal digits etc. In conventional

arithmetic, a number system based upon ten units (0 to 9) is used. However, arithmetic and logic circuits used in

computers and other digital systems operate with only 0's and 1's because it is very difficult to design circuits that require

ten distinct states. The number system with the basic symbols 0 and 1 is called binary. ie. A binary system uses just two

discrete values. The binary digit (either 0 or 1) is called a bit.

A group of bits which is used to represent the discrete elements of information is a symbol. The mapping of symbols to a

binary value is known a binary code. This mapping must be unique. For example, the decimal digits 0 through 9 are

represented in a digital system with a code of four bits. Thus a digital system is a system that manipulates discrete

elements of information that is represented internally in binary form.

 Decimal Numbers
The invention of decimal number system has been the most important factor in the development of science and

technology. The decimal number system uses positional number representation, which means that the value of each digit

is determined by its position in a number.

The base, also called the radix of a number system is the number of symbols that the system contains. The decimal system

has ten symbols: 0,1,2,3,4,5,6,7,8,9. In other words, it has a base of 10. Each position in the decimal system is 10 times

more significant than the previous position. The numeric value of a decimal number is determined by multiplying each

digit of the number by the value of the position in which the digit appears and then adding the products. Thus the number

2734 is interpreted as

Here 4 is the least significant digit (LSD) and 2 is the most significant digit (MSD).

In general in a number system with a base or radix r, the digits used are from 0 to r-1 and the number can be represented

as

Equation (1) is for all integers and for the fractions (numbers between 0 and 1), the following equation holds.

Thus for decimal fraction 0.7123

Binary Numbers
The binary number has a radix of 2. As r = 2, only two digits are needed, and these are 0 and 1. Like the decimal system,

binary is a positional system, except that each bit position corresponds to a power of 2 instead of a power of 10. In digital

systems, the binary number system and other number systems closely related to it are used almost exclusively. Hence,

digital systems often provide conversion between decimal and binary numbers. The decimal value of a binary number can

be formed by multiplying each power of 2 by either 1 or 0 followed by adding the values together.

Example : The decimal equivalent of the binary number 101010.

In binary r bits can represent symbols. e.g. 3 bits can represent up to 8 symbols, 4 bits for 16 symbols etc. For N

symbols to be represented, the minimum number of bits required is the lowest integer 'r'' that satisfies the relationship.

e.g. if N = 26, minimum r is 5 since .

Octal Numbers

Digital systems operate only on binary numbers. Since binary numbers are often very long, two shorthand notations, octal

and hexadecimal, are used for representing large binary numbers. Octal systems use a base or radix of 8. Thus it has digits

from 0 to 7 (r-1). As in the decimal and binary systems, the positional valued of each digit in a sequence of numbers is

fixed. Each position in an octal number is a power of 8, and each position is 8 times more significant than the previous

position.

Example : The decimal equivalent of the octal number 15.2.

Hexadecimal Numbers
The hexadecimal numbering system has a base of 16. There are 16 symbols. The decimal digits 0 to 9 are used as the first

ten digits as in the decimal system, followed by the letters A, B, C, D, E and F, which represent the values 10, 11,12,13,14

and 15 respectively. Table 1 shows the relationship between decimal, binary, octal and hexadecimal number systems.

Decimal Binary Octal Hexadecimal

0 0000 0 0

1 0001 1 1

2 0010 2 2

3 0011 3 3

4 0100 4 4

5 0101 5 5

6 0110 6 6

7 0111 7 7

8 1000 10 8

9 1001 11 9

10 1010 12 A

11 1011 13 B

12 1100 14 C

13 1101 15 D

14 1110 16 E

15 1111 17 F

Hexadecimal numbers are often used in describing the data in computer memory. A computer memory stores a large

number of words, each of which is a standard size collection of bits. An 8-bit word is known as a Byte. A hexadecimal

digit may be considered as half of a byte. Two hexadecimal digits constitute one byte, the rightmost 4 bits corresponding

to half a byte, and the leftmost 4 bits corresponding to the other half of the byte. Often a half-byte is called nibble.

If "word" size is n bits there are 2n possible bit patterns so only 2n possible distinct numbers can be represented. It

implies that all possible numbers cannot be represent and some of these bit patterns (half?) to represent negative numbers.

The negative numbers are generally represented with sign magnitude i.e. reserve one bit for the sign and the rest of bits

are interpreted directly as the number. For example in a 4 bit system, 0000 to 0111 can be used to positive numbers from

+0 to +2n-1 and represent 1000 to 1111 can be used for negative numbers from -0 to -2n-1. The two possible zero's

redundant and also it can be seen that such representations are arithmetically costly.

Another way to represent negative numbers are by radix and radix-1 complement (also called r's and (r-1)'s). For example

-k is represented as Rn -k. In the case of base 10 and corresponding 10's complement with n=2, 0 to 99 are the possible

numbers. In such a system, 0 to 49 is reserved for positive numbers and 50 to 99 are for positive numbers.

Examples:
+3 = +3

-3 = 10 2 -3 = 97

2's complement is a special case of complement representation. The negative number -k is equal to 2 n -k. In 4 bits

system, positive numbers 0 to 2n-1 is represented by 0000 to 0111 and negative numbers -2n-1 to -1 is represented by 1000

to 1111. Such a representation has only one zero and arithmetic is easier. To negate a number complement all bits and add

1

Example:

119 10 = 01110111 2

Complementing bits will result

10001000

 +1 add 1

10001001

That is 10001001 2 = - 119 10

Properties of Two's Complement Numbers

1. X plus the complement of X equals 0.

2. There is one unique 0.

3. Positive numbers have 0 as their leading bit (MSB); while negatives have 1 as their MSB .

4. The range for an n-bit binary number in 2's complement representation is from -2 (n-1) to 2 (n-1) - 1

5. The complement of the complement of a number is the original number.

6. Subtraction is done by addition to the 2's complement of the number.

Value of Two's Complement Numbers

For an n-bit 2's complement number the weights of the bits is the same as for unsigned numbers except of the MSB . For

the MSB or sign bit, the weight is -2 n-1. The value of the n-bit 2's complement number is given by:

A 2's-complement = (a n-1) x (-2 n-1) + (a n-2) x (2 n-1) + ... (a 1) x (2 1) + a 0

For example, the value of the 4-bit 2's complement number 1011 is given by:

= 1 x -2 3 + 0 x 2 2 + 1 x 2 1 + 1

= -8 + 0 + 2 + 1

= -5

An n-bit 2's complement number can converted to an m-bit number where m>n by appending m-n copies of the sign bit to

the left of the number. This process is called sign extension. Example: To convert the 4-bit 2's complement number 1011

to an 8-bit representation, the sign bit (here = 1) must be extended by appending four 1's to left of the number:

1011 4-bit 2's-complement = 11111011 8-bit 2's-complement

To verify that the value of the 8-bit number is still -5; value of 8-bit number

= -27 + 26 + 25 + 24 + 23 +2 +1

= -128 + 64 + 32 + 16 +8 +2+1

= -128 + 123 = -5

Similar to decimal number addition, two binary numbers are added by adding each pair of bits together with carry

propagation. An addition example is illustrated below:

X 190

Y 141

X + Y 331

Similar to addition, two binary numbers are subtracted by subtracting each pair of bits together with borrowing, where

needed. For example:

X 229

Y 46

X - Y 183

Two' complement addition/subtraction example

Overflow occurs if signs (MSBs) of both operands are the same and the sign of the result is different. Overflow can also

be detected if the carry in the sign position is different from the carry out of the sign position. Ignore carry out from MSB.

Number Base Conversions

This section describes the conversion of numbers from one number system to another. Radix Divide and Multiply Method

is generally used for conversion. There is a general procedure for the operation of converting a decimal number to a

number in base r. If the number includes a radix point, it is necessary to separate the number into an integer part and a

fraction part, since each part must be converted differently. The conversion of a decimal integer to a number in base r is

done by dividing the number and all successive quotients by r and accumulating the remainders. The conversion of a

decimal fraction is done by repeated multiplication by r and the integers are accumulated instead of remainders.

Integer part - repeated divisions by r yield LSD to MSD

Fractional part - repeated multiplications by r yield MSD to LSD

Example: Conversion of decimal 23 to binary is by divide decimal value by 2 (the base) until the value is 0

The answer is 23 10 = 10111 2

Divide number by 2; keep track of remainder; repeat with dividend equal to quotient until zero; first remainder is binary

LSB and last is MSB.

The conversion from decimal integers to any base-r system is similar to this above example, except that division is done

by r instead of 2.

Example:

Convert (0.7854) 10 to binary.

0.7854 x 2 = 1.5708; a -1 = 1

0.5708 x 2 = 1.1416; a -2 = 1

0.1416 x 2 = 0.2832; a -3 = 0

0.2832 x 2 = 0.5664; a -4 = 0

The answer is (0.7854) 10 = (0.1100) 2

Multiply fraction by two; keep track of integer part; repeat with multiplier equal to product fraction; first integer is MSB ,

last is the LSB; conversion may not be exact; a repeated fraction. The conversion from decimal fraction to any base-r

system is similar to this above example, except the multiplication is done by r instead of 2.

The conversion of decimal numbers with both integer and fraction parts is done by converting the integer and the fraction

separately and then combining the two answers.

Thus (23.7854) 10 = (10111. 1100) 2

For converting a binary number to octal, the following two step procedure can be used.

1. Group the number of bits into 3's starting at least significant symbol. If the number of bits is not evenly divisible

by 3, then add 0's at the most significant end.

2. Write the corresponding 1 octal digit for each group

Examples:

Similarly for converting a binary number to hex, the following two step procedure can be used.

1. Group the number of bits into 4's starting at least significant symbol. If the number of bits is not evenly divisible

by 4, then add 0's at the most significant end.

2. Write the corresponding 1 hex digit for each group

Examples:

The hex to binary conversion is very simple; just write down the 4 bit binary code for each hexadecimal digit

Example:

Similarly for octal to binary conversion, write down the 8 bit binary code for each octal digit.

The hex to octal conversion can be carried out in 2 steps; first the hex to binary followed by the binary to octal. Similarly,

decimal to hex conversion is completed in 2 steps; first the decimal to binary and from binary to hex as described above.

 Boolean Algebra and Basic Operators
Due to historical reasons, digital circuits are called switching circuits, digital circuit functions are called switching

functions and the algebra is called switching algebra. The algebraic system known as Boolean algebra named after the

mathematician George Boole. George Boole Invented multi-valued discrete algebra (1854) and E. V. Huntington

developed its postulates and theorems (1904). Historically, the theory of switching networks (or systems) is credited to

Claude Shannon, who applied mathematical logic to describe relay circuits (1938). Relays are controlled

electromechanical switches and they have been replaced by electronic controlled switches called logic gates. A special

case of Boolean Algebra known as Switching Algebra is a useful mathematical model for describing the combinational

circuits. In this section we will briefly discus how the Boolean algebra is applied to the design of digital systems.

Examples of Huntington 's postulates are given below:

Closure

If X and Y are in set (0, 1) then operations are also in set (0, 1)

Identity

Distributive

Complement

Note that for each property, one form is the dual of the other; (zeros to ones, ones to zeros, '.' operations to '+' operations,

'+' operations to '.' operations).

From the above postulates the following theorems could be derived.

Associative

Idempotence

Absorption

Simplification

Consensus

Adjacency

Demorgans

In general form

Very useful for complementing function expressions; for example

Switching Algebra Operations

A set is a collection of objects (or elements) and for example a set Z {0, 1} means that Z is a set containing two elements

distinguished by the symbols 0 and 1. There are three primary operations AND , OR and NOT.

NOT

It is anary complement or inversion operation. Usually shown as over bar (), other forms are and

AND

Also known as the conjunction operation; output is true (1) only if all inputs are true. Algebraic operators are '.', '&', ' '

OR

Also known as the disjunction operation; output is true (1) if any input is true. Algebraic operators are '+', '|', ' '

AND and OR are called binary operations because they are defined on two operands X and Y. Not is called a unary

operation because it is defined on a single operand X. All of these operations are closed. That means if one applies the

operation to two elements in a set Z {0, 1}, the result will be always an element in the set B and not something else.

Like standard algebra, switching algebra operators have a precedence of evaluation. The following rules are useful in this

regard.

1. NOT operations have the highest precedence

2. AND operations are next

3. OR operations are lowest

4. Parentheses explicitly define the order of operator evaluation and it is a good practice to use parentheses

especially for situations which can cases doubt.

Note that in Boolean algebra the operators AND and OR are not linear group operations; so one cannot solve equations by

"adding to" of "multiplying" on both sides of the equal sign as is done with real, complex numbers in standard algebra.

UNIT-II

GATE LEVEL MINIMIZATION

 Karnaugh Maps

Karnaugh maps provide a systematic method to obtain simplified sum-of-products (SOPs)
Boolean expressions. This is a compact way of representing a truth table and is a technique
that is used to simplify logic expressions. It is ideally suited for four or less variables,
becoming cumbersome for five or more variables. Each square represents either a minterm

or maxterm. A K-map of n variables will have 2 squares. For a Boolean expression, product
terms are denoted by 1's, while sum terms are denoted by 0's - but 0's are often left blank.

A K-map consists of a grid of squares, each square representing one canonical minterm
combination of the variables or their inverse. The map is arranged so that squares
representing minterms which differ by only one variable are adjacent both vertically and
horizontally. Therefore XY'Z' would be adjacent to X'Y'Z' and would also adjacent to XY'Z
and XYZ'.

 Minimization Technique

 Based on the Unifying Theorem: X + X' = 1
 The expression to be minimized should generally be in sum-of-product form (If

necessary, the conversion process is applied to create the sum-of-product form).
 The function is mapped onto the K-map by marking a 1 in those squares

corresponding to the terms in the expression to be simplified (The other squares may
be filled with 0's).

 Pairs of 1's on the map which are adjacent are combined using the theorem Y(X+X')
= Y where Y is any Boolean expression (If two pairs are also adjacent, then these
can also be combined using the same theorem).

 The minimization procedure consists of recognizing those pairs and multiple pairs.
o These are circled indicating reduced terms.
o Groups which can be circled are those which have two (21) 1's, four (22) 1's,

eight (23) 1's, and so on.
o Note that because squares on one edge of the map are considered adjacent

to those on the opposite edge, group can be formed with these squares.
o Groups are allowed to overlap.

 The objective is to cover all the 1's on the map in the fewest number of groups and to
create the largest groups to do this.

 Once all possible groups have been formed, the corresponding terms are identified.
o A group of two 1's eliminates one variable from the original minterm.
o A group of four 1's eliminates two variables from the original minterm.
o A group of eight 1's eliminates three variables from the original minterm, and

so on.
o The variables eliminated are those which are different in the original minterms

of the group.

 2-Variable K-Map

In any K-Map, each square represents a minterm. Adjacent squares always differ by just
one literal (So that the unifying theorem may apply: X + X' = 1). For the 2-variable case
(e.g.: variables X, Y), the map can be drawn as below. Two variable map is the one which
has got only two variables as input.

 Equivalent labeling

K-map needs not follow the ordering as shown in the figure above. What this means is that
we can change the position of m0, m1, m2, m3 of the above figure as shown in the two
figures below.

Position assignment is the same as the default k-maps positions. This is the one which we
will be using throughout this tutorial.

This figure is with changed position of m0, m1, m2, m3.

The K-map for a function is specified by putting a '1' in the square corresponding to a
minterm, a '0' otherwise.

 Example- Carry and Sum of a half adder

In this example we have the truth table as input, and we have two output functions.
Generally we may have n output functions for m input variables. Since we have two output

functions, we need to draw two k-maps (i.e. one for each function). Truth table of 1 bit adder
is shown below. Draw the k-map for Carry and Sum as shown below.

X Y Sum Carry

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

 Grouping/Circling K-maps

The power of K-maps is in minimizing the terms, K-maps can be minimized with the help of
grouping the terms to form single terms. When forming groups of squares, observe/consider
the following:

 Every square containing 1 must be considered at least once.
 A square containing 1 can be included in as many groups as desired.
 A group must be as large as possible.

 If a square containing 1 cannot be placed in a group, then leave it out to include in
final expression.

 The number of squares in a group must be equal to 2
 , i.e. 2,4,8,.

 The map is considered to be folded or spherical, therefore squares at the end of a
row or column are treated as adjacent squares.

 The simplified logic expression obtained from a K-map is not always unique.
Groupings can be made in different ways.

 Before drawing a K-map the logic expression must be in canonical form.

In the next few pages we will see some examples on grouping.

 Example of invalid groups

 Example - X'Y+XY

In this example we have the equation as input, and we have one output function. Draw the
k-map for function F with marking 1 for X'Y and XY position. Now combine two 1's as shown
in figure to form the single term. As you can see X and X' get canceled and only Y remains.

F = Y

 Example - X'Y+XY+XY'

In this example we have the equation as input, and we have one output function. Draw the
k-map for function F with marking 1 for X'Y, XY and XY position. Now combine two 1's as
shown in figure to form the two single terms.

F = X + Y

 3-Variable K-Map

There are 8 minterms for 3 variables (X, Y, Z). Therefore, there are 8 cells in a 3-variable K-
map. One important thing to note is that K-maps follow the gray code sequence, not the
binary one.

Using gray code arrangement ensures that minterms of adjacent cells differ by only ONE
literal. (Other arrangements which satisfy this criterion may also be used.)

Each cell in a 3-variable K-map has 3 adjacent neighbours. In general, each cell in an n-
variable K-map has n adjacent neighbours.

There is wrap-around in the K-map

 X'Y'Z' (m0) is adjacent to X'YZ' (m2)
 XY'Z' (m4) is adjacent to XYZ' (m6)

 Example

F = XYZ'+XYZ+X'YZ

F = XY + YZ

 Example

F(X,Y,Z) = (1,3,4,5,6,7)

F = X + Z

 4-Variable K-Map

There are 16 cells in a 4-variable (W, X, Y, Z); K-map as shown in the figure below.

There are 2 wrap-around: a horizontal wrap-around and a vertical wrap-around. Every cell
thus has 4 neighbours. For example, the cell corresponding to minterm m0 has neighbours
m1, m2, m4 and m8.

 Example

F(W,X,Y,Z) = (1,5,12,13)

F = WY'Z + W'Y'Z

 Example

F(W,X,Y,Z) = (4, 5, 10, 11, 14, 15)

F = W'XY' + WY

 QUINE-McCLUSKEY MINIMIZATION

Quine-McCluskey minimization method uses the same theorem to produce the solution as
the K-map method, namely X(Y+Y')=X

 Minimization Technique

 The expression is represented in the canonical SOP form if not already in that form.
 The function is converted into numeric notation.
 The numbers are converted into binary form.
 The minterms are arranged in a column divided into groups.
 Begin with the minimization procedure.

o Each minterm of one group is compared with each minterm in the group
immediately below.

o Each time a number is found in one group which is the same as a number in
the group below except for one digit, the numbers pair is ticked and a new
composite is created.

o This composite number has the same number of digits as the numbers in the
pair except the digit different which is replaced by an "x".

 The above procedure is repeated on the second column to generate a third column.
 The next step is to identify the essential prime implicants, which can be done using a

prime implicant chart.
o Where a prime implicant covers a minterm, the intersection of the

corresponding row and column is marked with a cross.
o Those columns with only one cross identify the essential prime implicants. ->

These prime implicants must be in the final answer.
o The single crosses on a column are circled and all the crosses on the same

row are also circled, indicating that these crosses are covered by the prime
implicants selected.

o Once one cross on a column is circled, all the crosses on that column can be
circled since the minterm is now covered.

o If any non-essential prime implicant has all its crosses circled, the prime
implicant is redundant and need not be considered further.

 Next, a selection must be made from the remaining nonessential prime implicants, by
considering how the non-circled crosses can be covered best.

o One generally would take those prime implicants which cover the greatest
number of crosses on their row.

o If all the crosses in one row also occur on another row which includes further
crosses, then the latter is said to dominate the former and can be selected.

o The dominated prime implicant can then be deleted.

 Example

Find the minimal sum of products for the Boolean expression, f= (1,2,3,7,8,9,10,11,14,15),
using Quine-McCluskey method.

Firstly these minterms are represented in the binary form as shown in the table below. The
above binary representations are grouped into a number of sections in terms of the number
of 1's as shown in the table below.

Binary representation of minterms

Minterms U V W X

1 0 0 0 1

2 0 0 1 0

3 0 0 1 1

7 0 1 1 1

8 1 0 0 0

9 1 0 0 1

10 1 0 1 0

11 1 0 1 1

14 1 1 1 0

15 1 1 1 1

Group of minterms for different number of 1's

No of 1's Minterms U V W X

1 1 0 0 0 1

1 2 0 0 1 0

1 8 1 0 0 0

2 3 0 0 1 1

2 9 1 0 0 1

2 10 1 0 1 0

3 7 0 1 1 1

3 11 1 0 1 1

3 14 1 1 1 0

4 15 1 1 1 1

Any two numbers in these groups which differ from each other by only one variable can be
chosen and combined, to get 2-cell combination, as shown in the table below.

2-Cell combinations

Combinations U V W X

(1,3) 0 0 - 1

(1,9) - 0 0 1

(2,3) 0 0 1 -

(2,10) - 0 1 0

(8,9) 1 0 0 -

(8,10) 1 0 - 0

(3,7) 0 - 1 1

(3,11) - 0 1 1

(9,11) 1 0 - 1

(10,11) 1 0 1 -

(10,14) 1 - 1 0

(7,15) - 1 1 1

(11,15) 1 - 1 1

(14,15) 1 1 1 -

From the 2-cell combinations, one variable and dash in the same position can be combined
to form 4-cell combinations as shown in the figure below.

4-Cell combinations

Combinations U V W X

(1,3,9,11) - 0 - 1

(2,3,10,11) - 0 1 -

(8,9,10,11) 1 0 - -

(3,7,11,15) - - 1 1

(10,11,14,15) 1 - 1 -

The cells (1,3) and (9,11) form the same 4-cell combination as the cells (1,9) and (3,11).
The order in which the cells are placed in a combination does not have any effect. Thus the
(1,3,9,11) combination could be written as (1,9,3,11).

From above 4-cell combination table, the prime implicants table can be plotted as shown in
table below.

Prime Implicants Table

Prime
Implicants

1 2 3 7 8 9 10 11 14 15

(1,3,9,11) X - X - - X - X - -

(2,3,10,11) - X X - - - X X - -

(8,9,10,11) - - - - X X X X - -

(3,7,11,15) - - - - - - X X X X

- X X - X X - - - X -

The columns having only one cross mark correspond to essential prime implicants. A yellow
cross is used against every essential prime implicant. The prime implicants sum gives the
function in its minimal SOP form.

Y = V'X + V'W + UV' + WX + UW

Combinational Logic

 Introduction

Combinatorial Circuits are circuits which can be considered to have the following generic
structure.

Whenever the same set of inputs is fed in to a combinatorial circuit, the same outputs will be
generated. Such circuits are said to be stateless. Some simple combinational logic elements
that we have seen in previous sections are "Gates".

All the gates in the above figure have 2 inputs and one output; combinational elements
simplest form are "not" gate and "buffer" as shown in the figure below. They have only one
input and one output.

 Decoders

A decoder is a multiple-input, multiple-output logic circuit that converts coded inputs into
coded outputs, where the input and output codes are different; e.g. n-to-2n, BCD decoders.

Enable inputs must be on for the decoder to function, otherwise its outputs assume a single
"disabled" output code word.

Decoding is necessary in applications such as data multiplexing, 7 segment display and
memory address decoding. Figure below shows the pseudo block of a decoder.

 Basic Binary Decoder

And AND gate can be used as the basic decoding element, because its output is HIGH only
when all its inputs are HIGH. For example, if the input binary number is 0110, then, to make
all the inputs to the AND gate HIGH, the two outer bits must be inverted using two inverters
as shown in figure below.

 Binary n-to-2n Decoders

A binary decoder has n inputs and 2n outputs. Only one output is active at any one time,
corresponding to the input value. Figure below shows a representation of Binary n-to-2n
decoder

 Example - 2-to-4 Binary Decoder

A 2 to 4 decoder consists of two inputs and four outputs, truth table and symbols of which is
shown below.

Truth Table

X Y F0 F1 F2 F3

0 0 1 0 0 0

0 1 0 1 0 0

1 0 0 0 1 0

1 1 0 0 0 1

Symbol

To minimize the above truth table we may use kmap, but doing that you will realize that it is
a waste of time. One can directly write down the function for each of the outputs. Thus we
can draw the circuit as shown in figure below.

Note: Each output is a 2-variable minterm (X'Y', X'Y, XY', XY)

Circuit

 Example - 3-to-8 Binary Decoder

A 3 to 8 decoder consists of three inputs and eight outputs, truth table and symbols of which
is shown below.

Truth Table

X Y Z F0 F1 F2 F3 F4 F5 F6 F7

0 0 0 1 0 0 0 0 0 0 0

0 0 1 0 1 0 0 0 0 0 0

0 1 0 0 0 1 0 0 0 0 0

0 1 1 0 0 0 1 0 0 0 0

1 0 0 0 0 0 0 1 0 0 0

1 0 1 0 0 0 0 0 1 0 0

1 1 0 0 0 0 0 0 0 1 0

1 1 1 0 0 0 0 0 0 0 1

Symbol

From the truth table we can draw the circuit diagram as shown in figure below.

Circuit

 Implementing Functions Using Decoders

 Any n-variable logic function, in canonical sum-of-minterms form can be implemented
using a single n-to-2n decoder to generate the minterms, and an OR gate to form the
sum.

o The output lines of the decoder corresponding to the minterms of the function
are used as inputs to the or gate.

 Any combinational circuit with n inputs and m outputs can be implemented with an n-
to-2n decoder with m OR gates.

 Suitable when a circuit has many outputs, and each output function is expressed with
few minterms.

 Example - Full adder

Equation

S(x, y, z) = (1,2,4,7)
C(x, y, z) = (3,5,6,7)

Truth Table

X Y Z C S

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

From the truth table we know the values for which the sum (s) is active and also the carry
(c) is active. Thus we have the equation as shown above and a circuit can be drawn as
shown below from the equation derived.

Circuit

 Encoders

An encoder is a combinational circuit that performs the inverse operation of a decoder. If a
device output code has fewer bits than the input code has, the device is usually called an
encoder. e.g. 2n-to-n, priority encoders.

The simplest encoder is a 2n-to-n binary encoder, where it has only one of 2n inputs = 1 and
the output is the n-bit binary number corresponding to the active input.

 Example - Octal-to-Binary Encoder

Octal-to-Binary take 8 inputs and provides 3 outputs, thus doing the opposite of what the 3-
to-8 decoder does. At any one time, only one input line has a value of 1. The figure below
shows the truth table of an Octal-to-binary encoder.

Truth Table

I0 I1 I2 I3 I4 I5 I6 I7 Y2 Y1 Y0

1 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0 0 1 0

0 0 0 1 0 0 0 0 0 1 1

0 0 0 0 1 0 0 0 1 0 0

0 0 0 0 0 1 0 0 1 0 1

0 0 0 0 0 0 1 0 1 1 0

0 0 0 0 0 0 0 1 1 1 1

For an 8-to-3 binary encoder with inputs I0-I7 the logic expressions of the outputs Y0-Y2
are:

Y0 = I1 + I3 + I5 + I7
Y1= I2 + I3 + I6 + I7
Y2 = I4 + I5 + I6 +I7

Based on the above equations, we can draw the circuit as shown below

Circuit

 Example - Decimal-to-Binary Encoder

Decimal-to-Binary take 10 inputs and provides 4 outputs, thus doing the opposite of what
the 4-to-10 decoder does. At any one time, only one input line has a value of 1. The figure
below shows the truth table of a Decimal-to-binary encoder.

Truth Table

I0 I1 I2 I3 I4 I5 I6 I7 I8 I9 Y3 Y2 Y1 Y0

1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0 0 0 0 0 1 0

0 0 0 1 0 0 0 0 0 0 0 0 1 1

0 0 0 0 1 0 0 0 0 0 0 1 0 0

0 0 0 0 0 1 0 0 0 0 0 1 0 1

0 0 0 0 0 0 1 0 0 0 0 1 1 0

0 0 0 0 0 0 0 1 0 0 0 1 1 1

0 0 0 0 0 0 0 0 1 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 1 0 0 1

From the above truth table , we can derive the functions Y3, Y2, Y1 and Y0 as given below.

Y3 = I8 + I9
Y2 = I4 + I5 + I6 + I7
Y1 = I2 + I3 + I6 + I7
Y0 = I1 + I3 + I5 + I7 + I9

 Priority Encoder

If we look carefully at the Encoder circuits that we got, we see the following limitations. If
more then two inputs are active simultaneously, the output is unpredictable or rather it is not
what we expect it to be.

This ambiguity is resolved if priority is established so that only one input is encoded, no
matter how many inputs are active at a given point of time.

The priority encoder includes a priority function. The operation of the priority encoder is such
that if two or more inputs are active at the same time, the input having the highest priority
will take precedence.

 Example - 4to3 Priority Encoder

The truth table of a 4-input priority encoder is as shown below. The input D3 has the highest
priority, D2 has next highest priority, D0 has the lowest priority. This means output Y2 and
Y1 are 0 only when none of the inputs D1, D2, D3 are high and only D0 is high.

A 4 to 3 encoder consists of four inputs and three outputs, truth table and symbols of which
is shown below.

Truth Table

D3 D2 D1 D0 Y2 Y1 Y0

0 0 0 0 0 0 0

0 0 0 1 0 0 1

0 0 1 x 0 1 0

0 1 x x 0 1 1

1 x x x 1 0 0

Now that we have the truth table, we can draw the Kmaps as shown below.

Kmaps

From the Kmap we can draw the circuit as shown below. For Y2, we connect directly to D3.

We can apply the same logic to get higher order priority encoders.

 Multiplexer

A multiplexer (MUX) is a digital switch which connects data from one of n sources to the
output. A number of select inputs determine which data source is connected to the output.
The block diagram of MUX with n data sources of b bits wide and s bits wide select line is
shown in below figure.

MUX acts like a digitally controlled multi-position switch where the binary code applied to the
select inputs controls the input source that will be switched on to the output as shown in the
figure below. At any given point of time only one input gets selected and is connected to
output, based on the select input signal.

 Mechanical Equivalent of a Multiplexer

The operation of a multiplexer can be better explained using a mechanical switch as shown
in the figure below. This rotary switch can touch any of the inputs, which is connected to the
output. As you can see at any given point of time only one input gets transferred to output.

 Example - 2x1 MUX

A 2 to 1 line multiplexer is shown in figure below, each 2 input lines A to B is applied to one
input of an AND gate. Selection lines S are decoded to select a particular AND gate. The
truth table for the 2:1 mux is given in the table below.

Symbol

Truth Table

S Y

0 A

1 B

 Design of a 2:1 Mux

To derive the gate level implementation of 2:1 mux we need to have truth table as shown in
figure. And once we have the truth table, we can draw the K-map as shown in figure for all
the cases when Y is equal to '1'.

Combining the two 1' as shown in figure, we can drive the output y as shown below

Y = A.S' + B.S

Truth Table

B A S Y

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 0

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

Kmap

Circuit

 Example : 4:1 MUX

A 4 to 1 line multiplexer is shown in figure below, each of 4 input lines I0 to I3 is applied to
one input of an AND gate. Selection lines S0 and S1 are decoded to select a particular AND
gate. The truth table for the 4:1 mux is given in the table below.

Symbol

Truth Table

S1 S0 Y

0 0 I0

0 1 I1

1 0 I2

1 1 I3

Circuit

 Larger Multiplexers

Larger multiplexers can be constructed from smaller ones. An 8-to-1 multiplexer can be
constructed from smaller multiplexers as shown below.

 Example - 8-to-1 multiplexer from Smaller MUX

Truth Table

S2 S1 S0 F

0 0 0 I0

0 0 1 I1

0 1 0 I2

0 1 1 I3

1 0 0 I4

1 0 1 I5

1 1 0 I6

1 1 1 I7

Circuit

 Example - 16-to-1 multiplexer from 4:1 mux

 De-multiplexers

They are digital switches which connect data from one input source to one of n outputs.

Usually implemented by using n-to-2n binary decoders where the decoder enable line is
used for data input of the de-multiplexer.

The figure below shows a de-multiplexer block diagram which has got s-bits-wide select
input, one b-bits-wide data input and n b-bits-wide outputs.

 Mechanical Equivalent of a De-Multiplexer

The operation of a de-multiplexer can be better explained using a mechanical switch as
shown in the figure below. This rotary switch can touch any of the outputs, which is
connected to the input. As you can see at any given point of time only one output gets
connected to input.

1-bit 4-output de-multiplexer using a 2x4 binary decoder.

 Example: 1-to-4 De-multiplexer

Symbol

Truth Table

S1 S0 F0 F1 F2 F3

0 0 D 0 0 0

0 1 0 D 0 0

1 0 0 0 D 0

1 1 0 0 0 D

 Boolean Function Implementation

Earlier we had seen that it is possible to implement Boolean functions using decoders. In
the same way it is also possible to implement Boolean functions using muxers and de-
muxers.

 Implementing Functions Multiplexers

Any n-variable logic function can be implemented using a smaller 2n-1-to-1 multiplexer and a
single inverter (e.g 4-to-1 mux to implement 3 variable functions) as follows.

Express function in canonical sum-of-minterms form. Choose n-1 variables as inputs to mux
select lines. Construct the truth table for the function, but grouping inputs by selection line
values (i.e select lines as most significant inputs).

Determine multiplexer input line i values by comparing the remaining input variable and the
function F for the corresponding selection lines value i.

We have four possible mux input line i values:

 Connect to 0 if the function is 0 for both values of remaining variable.
 Connect to 1 if the function is 1 for both values of remaining variable.
 Connect to remaining variable if function is equal to the remaining variable.
 Connect to the inverted remaining variable if the function is equal to the remaining

variable inverted.

 Example: 3-variable Function Using 8-to-1 mux

Implement the function F(X,Y,Z) = S(1,3,5,6) using an 8-to-1 mux. Connect the input
variables X, Y, Z to mux select lines. Mux data input lines 1, 3, 5, 6 that correspond to the
function minterms are connected to 1. The remaining mux data input lines 0, 2, 4, 7 are
connected to 0.

 Example: 3-variable Function Using 4-to-1 mux

Implement the function F(X,Y,Z) = S(0,1,3,6) using a single 4-to-1 mux and an inverter. We
choose the two most significant inputs X, Y as mux select lines.

Construct truth table.

Truth Table

Select i X Y Z F Mux Input i

0 0 0 0 1 1

0 0 0 1 1 1

1 0 1 0 0 Z

1 0 1 1 1 Z

2 1 0 0 0 0

2 1 0 1 0 0

3 1 1 0 1 Z'

3 1 1 1 0 Z'

Circuit

We determine multiplexer input line i values by comparing the remaining input variable Z
and the function F for the corresponding selection lines value i

 when XY=00 the function F is 1 (for both Z=0, Z=1) thus mux input0 = 1
 when XY=01 the function F is Z thus mux input1 = Z
 when XY=10 the function F is 0 (for both Z=0, Z=1) thus mux input2 = 0
 when XY=11 the function F is Z' thus mux input3 = Z'

UNIT-III

 Introduction

Digital electronics is classified into combinational logic and sequential logic. Combinational
logic output depends on the inputs levels, whereas sequential logic output depends on
stored levels and also the input levels.

The memory elements are devices capable of storing binary info. The binary info stored in
the memory elements at any given time defines the state of the sequential circuit. The input
and the present state of the memory element determines the output. Memory elements next
state is also a function of external inputs and present state. A sequential circuit is specified
by a time sequence of inputs, outputs, and internal states.

There are two types of sequential circuits. Their classification depends on the timing of their
signals:

 Synchronous sequential circuits
 Asynchronous sequential circuits

 Asynchronous sequential circuit

This is a system whose outputs depend upon the order in which its input variables change
and can be affected at any instant of time.

Gate-type asynchronous systems are basically combinational circuits with feedback paths.
Because of the feedback among logic gates, the system may, at times, become unstable.
Consequently they are not often used.

 Synchronous sequential circuits

This type of system uses storage elements called flip-flops that are employed to change
their binary value only at discrete instants of time. Synchronous sequential circuits use logic
gates and flip-flop storage devices. Sequential circuits have a clock signal as one of their
inputs. All state transitions in such circuits occur only when the clock value is either 0 or 1 or
happen at the rising or falling edges of the clock depending on the type of memory elements
used in the circuit. Synchronization is achieved by a timing device called a clock pulse
generator. Clock pulses are distributed throughout the system in such a way that the flip-
flops are affected only with the arrival of the synchronization pulse. Synchronous sequential
circuits that use clock pulses in the inputs are called clocked-sequential circuits. They are
stable and their timing can easily be broken down into independent discrete steps, each of
which is considered separately.

A clock signal is a periodic square wave that indefinitely switches from 0 to 1 and from 1 to 0
at fixed intervals. Clock cycle time or clock period: the time interval between two
consecutive rising or falling edges of the clock.

Clock Frequency = 1 / clock cycle time (measured in cycles per second or Hz)

 Concept of Sequential Logic

A sequential circuit as seen in the last page, is combinational logic with some feedback to maintain

its current value, like a memory cell. To understand the basics let's consider the basic feedback logic

circuit below, which is a simple NOT gate whose output is connected to its input. The effect is that

output oscillates between HIGH and LOW (i.e. 1 and 0). Oscillation frequency depends on gate

delay and wire delay. Assuming a wire delay of 0 and a gate delay of 10ns, then oscillation

frequency would be (on time + off time = 20ns) 50Mhz.

The basic idea of having the feedback is to store the value or hold the value, but in the
above circuit, output keeps toggling. We can overcome this problem with the circuit below,

which is basically cascading two inverters, so that the feedback is in-phase, thus avoids
toggling. The equivalent circuit is the same as having a buffer with its output connected to its
input.

But there is a problem here too: each gate output value is stable, but what will it be? Or in
other words buffer output can not be known. There is no way to tell. If we could know or set
the value we would have a simple 1-bit storage/memory element.

 Latches and Flip-Flops

There are two types types of sequential circuits.

 Asynchronous Circuits.
 Synchronous Circuits.
 As seen in last section, Latches and Flip-flops are one and the same with a slight

variation: Latches have level sensitive control signal input and Flip-flops have edge
sensitive control signal input. Flip-flops and latches which use this control signals are
called synchronous circuits. So if they don't use clock inputs, then they are called
asynchronous circuits.

 RS Latch

RS latch have two inputs, S and R. S is called set and R is called reset. The S input is used
to produce HIGH on Q (i.e. store binary 1 in flip-flop). The R input is used to produce LOW
on Q (i.e. store binary 0 in flip-flop). Q' is Q complementary output, so it always holds the
opposite value of Q. The output of the S-R latch depends on current as well as previous
inputs or state, and its state (value stored) can change as soon as its inputs change. The
circuit and the truth table of RS latch is shown below. (This circuit is as we saw in the last
page, but arranged to look beautiful :-)).

S R Q Q+

0 0 0 0

0 0 1 1

0 1 X 0

1 0 X 1

1 1 X 0

The operation has to be analyzed with the 4 inputs combinations together with the 2
possible previous states.

 When S = 0 and R = 0: If we assume Q = 1 and Q' = 0 as initial condition, then
output Q after input is applied would be Q = (R + Q')' = 1 and Q' = (S + Q)' = 0.
Assuming Q = 0 and Q' = 1 as initial condition, then output Q after the input applied
would be Q = (R + Q')' = 0 and Q' = (S + Q)' = 1. So it is clear that when both S and R
inputs are LOW, the output is retained as before the application of inputs. (i.e. there
is no state change).

 When S = 1 and R = 0: If we assume Q = 1 and Q' = 0 as initial condition, then
output Q after input is applied would be Q = (R + Q')' = 1 and Q' = (S + Q)' = 0.
Assuming Q = 0 and Q' = 1 as initial condition, then output Q after the input applied
would be Q = (R + Q')' = 1 and Q' = (S + Q)' = 0. So in simple words when S is HIGH
and R is LOW, output Q is HIGH.

 When S = 0 and R = 1: If we assume Q = 1 and Q' = 0 as initial condition, then
output Q after input is applied would be Q = (R + Q')' = 0 and Q' = (S + Q)' = 1.
Assuming Q = 0 and Q' = 1 as initial condition, then output Q after the input applied
would be Q = (R + Q')' = 0 and Q' = (S + Q)' = 1. So in simple words when S is LOW
and R is HIGH, output Q is LOW.

 When S = 1 and R =1 : No matter what state Q and Q' are in, application of 1 at input
of NOR gate always results in 0 at output of NOR gate, which results in both Q and
Q' set to LOW (i.e. Q = Q'). LOW in both the outputs basically is wrong, so this case
is invalid.

The waveform below shows the operation of NOR gates based RS Latch.

It is possible to construct the RS latch using NAND gates (of course as seen in Logic gates
section). The only difference is that NAND is NOR gate dual form (Did I say that in Logic
gates section?). So in this case the R = 0 and S = 0 case becomes the invalid case. The
circuit and Truth table of RS latch using NAND is shown below.

S R Q Q+

1 1 0 0

1 1 1 1

0 1 X 0

1 0 X 1

0 0 X 1

If you look closely, there is no control signal (i.e. no clock and no enable), so this kind of
latches or flip-flops are called asynchronous logic elements. Since all the sequential circuits
are built around the RS latch, we will concentrate on synchronous circuits and not on
asynchronous circuits.

 RS Latch with Clock

We have seen this circuit earlier with two possible input configurations: one with level
sensitive input and one with edge sensitive input. The circuit below shows the level sensitive
RS latch. Control signal "Enable" E is used to gate the input S and R to the RS Latch. When
Enable E is HIGH, both the AND gates act as buffers and thus R and S appears at the RS
latch input and it functions like a normal RS latch. When Enable E is LOW, it drives LOW to
both inputs of RS latch. As we saw in previous page, when both inputs of a NOR latch are
low, values are retained (i.e. the output does not change).

 Setup and Hold Time

For synchronous flip-flops, we have special requirements for the inputs with respect to clock
signal input. They are

 Setup Time: Minimum time period during which data must be stable before the clock
makes a valid transition. For example, for a posedge triggered flip-flop, with a setup
time of 2 ns, Input Data (i.e. R and S in the case of RS flip-flop) should be stable for
at least 2 ns before clock makes transition from 0 to 1.

 Hold Time: Minimum time period during which data must be stable after the clock
has made a valid transition. For example, for a posedge triggered flip-flop, with a hold
time of 1 ns. Input Data (i.e. R and S in the case of RS flip-flop) should be stable for
at least 1 ns after clock has made transition from 0 to 1.

 If data makes transition within this setup window and before the hold window, then
the flip-flop output is not predictable, and flip-flop enters what is known as meta
stable state. In this state flip-flop output oscillates between 0 and 1. It takes some
time for the flip-flop to settle down. The whole process is called metastability. You
could refer to tidbits section to know more information on this topic.

The waveform below shows input S (R is not shown), and CLK and output Q (Q' is not shown) for a

SR posedge flip-flop.

 D Latch

The RS latch seen earlier contains ambiguous state; to eliminate this condition we can
ensure that S and R are never equal. This is done by connecting S and R together with an
inverter. Thus we have D Latch: the same as the RS latch, with the only difference that
there is only one input, instead of two (R and S). This input is called D or Data input. D latch
is called D transparent latch for the reasons explained earlier. Delay flip-flop or delay latch is
another name used. Below is the truth table and circuit of D latch.

In real world designs (ASIC/FPGA Designs) only D latches/Flip-Flops are used.

D Q Q+

1 X 1

0 X 0

Below is the D latch waveform, which is similar to the RS latch one, but with R removed.

 JK Latch

The ambiguous state output in the RS latch was eliminated in the D latch by joining the
inputs with an inverter. But the D latch has a single input. JK latch is similar to RS latch in
that it has 2 inputs J and K as shown figure below. The ambiguous state has been
eliminated here: when both inputs are high, output toggles. The only difference we see here
is output feedback to inputs, which is not there in the RS latch.

J K Q

1 1 0

1 1 1

1 0 1

0 1 0

 T Latch

When the two inputs of JK latch are shorted, a T Latch is formed. It is called T latch as,
when input is held HIGH, output toggles.

T Q Q+

1 0 1

1 1 0

0 1 1

0 0 0

 JK Master Slave Flip-Flop

All sequential circuits that we have seen in the last few pages have a problem (All level
sensitive sequential circuits have this problem). Before the enable input changes state from
HIGH to LOW (assuming HIGH is ON and LOW is OFF state), if inputs changes, then
another state transition occurs for the same enable pulse. This sort of multiple transition
problem is called racing.

If we make the sequential element sensitive to edges, instead of levels, we can overcome
this problem, as input is evaluated only during enable/clock edges.

In the figure above there are two latches, the first latch on the left is called master latch and
the one on the right is called slave latch. Master latch is positively clocked and slave latch is
negatively clocked.

UNIT - IV

 Sequential Circuits Design

We saw in the combinational circuits section how to design a combinational circuit from the
given problem. We convert the problem into a truth table, then draw K-map for the truth
table, and then finally draw the gate level circuit for the problem. Similarly we have a flow for
the sequential circuit design. The steps are given below.

 Draw state diagram.
 Draw the state table (excitation table) for each output.
 Draw the K-map for each output.
 Draw the circuit.

Looks like sequential circuit design flow is very much the same as for combinational circuit.

 State Diagram

The state diagram is constructed using all the states of the sequential circuit in question. It
builds up the relationship between various states and also shows how inputs affect the
states.

To ease the following of the tutorial, let's consider designing the 2 bit up counter (Binary
counter is one which counts a binary sequence) using the T flip-flop.

Below is the state diagram of the 2-bit binary counter.

 State Table

The state table is the same as the excitation table of a flip-flop, i.e. what inputs need to be applied to

get the required output. In other words this table gives the inputs required to produce the specific

outputs.

Q1 Q0 Q1+ Q0+ T1 T0

0 0 0 1 0 1

0 1 1 0 1 1

1 0 1 1 0 1

1 1 0 0 1 1

 K-map

The K-map is the same as the combinational circuits K-map. Only difference: we draw K-map for the

inputs i.e. T1 and T0 in the above table. From the table we deduct that we don't need to draw K-map

for T0, as it is high for all the state combinations. But for T1 we need to draw the K-map as shown

below, using SOP.

 Circuit

There is nothing special in drawing the circuit, it is the same as any circuit drawing from K-
map output. Below is the circuit of 2-bit up counter using the T flip-flop.

UNIT-V

Finite State Machine

A model of computation consisting of a set of states, a start state, an input alphabet, and a transition

function that maps input symbols and current states to a next state. Computation begins in the start

state with an input string. It changes to new states depending on the transition function. There are

many variants, for instance, machines having actions (outputs) associated with transitions (Mealy

machine) or states (Moore machine), multiple start states, transitions conditioned on no input symbol

(a null) or more than one transition for a given symbol and state (nondeterministic finite state

machine), one or more states designated as accepting states (recognizer), etc.

Definition 1 A finite state machine is a 5-tuple, (S, A,R, _, s0) where S is a finite set of states, A is a
finite alphabet, R is a finite alphabet of responses and _ is a transition function such that for any
state,s 2 S and symbol a 2 A, _(s, a) = (s0, r0) indicates the next state, s0 and the output symbol, r0 2
R.
s0 is the initial state.

Definition 2 A recogniser is a special kind of finite state machine in which the output alphabet
contains two special symbols: accept and reject. The machine responds to any finite sequence of
input
symbols, terminated with a special end of input symbol (_), with either accept or reject.

Limitations of Finite State Machines:

 Number of states in the composed FSM grows dramatically (state explosion problem)

 Composing FSMs of n subsystems, with k1 , k2 , k3,……..kn, states respectively, results in a
system whose FSM has k1 x k2 x …. x kn states - This growth is exponential with the
number of subsystems , not linear (i.e., k1 + k2 +… + kn).

 Since at any time, a global state of the system must be defined and a single transition must
occur, FSM model is not suitable for describing asynchronous concurrent activities in the
system.

Mealy And Moore Models

Mealy and Moore models are the basic models of state machines. A state machine which uses only
Entry Actions, so that its output depends on the state, is called a Moore model. A state machine
which uses only Input Actions, so that the output depends on the state and also on inputs, is called a
Mealy model. The models selected will influence a design but there are no general indications as to
which model is better. Choice of a model depends on the application, execution means (for instance,
hardware systems are usually best realized as Moore models) and personal preferences of a
designer or programmer. In practice, mixed models are often used with several action types. On an
example we will show the consequences of using a specific model. As the example we have taken a
Microwave Oven control. The oven has a momentary-action push button Run to start (apply the
power) and a Timer that determines the cooking length. Cooking can be interrupted at any time by
opening the oven door. After closing the door the cooking is continued. Cooking is terminated when
the Timer elapses. When the door is open a lamp inside the oven is switched on, when the door is
closed the lamp is off. During cooking the lamp is also switched on. The cooking period (timeout
value) is set by a potentiometer which supplies a voltage to the control system: the voltage is
represented by a numeric value 0..4095 which is scaled by the Ni object to 1799. This arrangement
allows the maximum cooking time to equal 1799 seconds, i.e. 30 minutes. The solution should also
take into account the possibility that the push button Run could get blocked continuously in the
active Position (which is easy to demonstrate if testing the system in SWLab, which has only the
two-positions buttons): in such a case cooking must not start again until it is deactivated when the
cooking is terminated (otherwise our meal which we wanted to heat for instance for 5 minutes could
be burned until we discover that the button has got stuck in the active position). In other words, each
cooking requires intentional activation of the Run button.
The control system has the following inputs: Run momentary-action push button - when activated
starts cooking, Timer - while this runs keep on cooking, Door sensor - can be true (door closed) or
false (door open). And the following outputs: Power - can be true (power on) or false (power off),
Lamp - can be true (lamp on) or false (lamp off).

Moore model : Using Moore model we get a state machine whose state transition diagram is

shown in Figure 1.
This solution requires 7 states. Figure 2, Figure 3 and Figure 4 show state transition tables for three
of those states: Init, Cooking and CookingInterrupted. The state machine uses only Entry actions.
Other states can be studied in the provided file MWaveOven_Moore.fsm.
While specifying that state machine the states dominate. We think in the following manner: if the
input condition changes the state machine changes its state (if a specific transition condition is
valid). Entering the new state, the state machine does some actions and waits for the reaction of the

http://74.125.153.132/search?q=cache:IOB991nfIdcJ:www.stateworks.com/active/download/TN10-Moore-Or-Mealy-Model.pdf+mealy+and+moore+models&cd=1&hl=en&ct=clnk&gl=in#2
http://74.125.153.132/search?q=cache:IOB991nfIdcJ:www.stateworks.com/active/download/TN10-Moore-Or-Mealy-Model.pdf+mealy+and+moore+models&cd=1&hl=en&ct=clnk&gl=in#3

controlled system. In a Moore model the entry actions define effectively the state. For instance, we

would think about the state Cooking: it is a state where the Timer runs and the state
machines waits for the Timer OVER signal.

Mealy model
The Mealy model is shown in Figure 5. It requires only 5 states. The states: Idle, Cooking
and Cooking Interrupted for that model (see Figure 6, Figure 7 and Figure 8) illustrate its
features. Other states can be studied in the provided file MWaveOven_Mealy.fsm. All
activities are done as Input actions, which means that actions essential for a state must be
performed in all states which have a transition to that state. The Timer must be now started
in both states: Idle and Cooking Interrupted.
This may be considered as a disadvantage: the functioning becomes a bit confusing.

Minimization of FSM:

INPUT OUTPUT

Algorithmic State Machine

The Algorithmic State Machine (ASM) method is a method for designing finite state

machines. It is used to represent diagrams of digital integrated circuits. The ASM diagram is

like a state diagram but less formal and thus easier to understand. An ASM chart is a

method of describing the sequential operations of a digital system.

ASM Method

The ASM method is composed of the following steps:

1. Create an algorithm, using pseudocode, to describe the desired operation of the
device.
2. Convert the pseudocode into an ASM chart.
3. Design the datapath based on the ASM chart.
4. Create a detailed ASM chart based on the datapath.
5. Design the control logic based on the detailed ASM chart.

ASM Chart

An ASM chart consists of an interconnection of three types of basic elements: states,
condition checks, and conditional outputs. An ASM state, represented as a rectangle,
corresponds to one state of a regular state diagram or finite state machine. The name of the
state is indicated outside the box in the top left corner. The Moore type outputs are listed
inside the box.

State box

http://en.wikipedia.org/wiki/Pseudocode
http://en.wikipedia.org/wiki/Pseudocode
http://en.wikipedia.org/wiki/Moore_machine
http://en.wikipedia.org/wiki/File:ASM_Chart_State_Box.png

An ASM condition check, indicated by a diamond with one input and two outputs (for true
and false), is used to conditionally transfer between two states or between a state and a
conditional output. The decision box contains the stated condition expression to be tested,
the expression contains one or more inputs of the FSM.

Decision box

Decision box: A diamond indicates that the stated condition expression is to be tested and
the exit path is to be chosen accordingly. The condition expression contains one or more
inputs to the FSM.

Conditional output box

Conditional output box: An oval denotes the output signals that are of Mealy type. These
outputs depend not only on the state but also the inputs to the FSM.

Datapath

Once the desired operation of a circuit has been described using RTL operations, the
datapath components may be derived. Every unique variable that is assigned a value in the
RTL program can be implemented as a register. Depending on the functional operation
performed when assigning a value to a variable, the register for that variable may be
implemented as a straightforward register, a shift register, a counter, or a register preceded
by a combinational logic block. The combinational logic block associated with a register may
implement an adder, subtracter, multiplexer, or some other type of combinational logic
function.

Binary multiplier:

A binary multiplier is a electronic circuit used in digital electronics, such as a computer, to
multiply two binary numbers. It is built using binary adders.

http://en.wikipedia.org/wiki/File:ASM_Chart_Decision_Box.png
http://en.wikipedia.org/wiki/File:ASM_Chart_Conditional_Output_Box.png

Theory

Using long multiplication, a product of two N-bit numbers can be expressed as the sum of N
N-bit partial products, which are then added to produce a 2N-bit product.

 a3 a2 a1 a0

 × b3 b2 b1 b0

 a3b0 a2b0 a1b0 a0b0

 a3b1 a2b1 a1b1 a0b1

 a3b2 a2b2 a1b2 a0b2

 a3b3 a2b3 a1b3 a0b3

p7 p6 p5 p4 p3 p2 p1 p0

The partial products can be trivially computed from the fact that ai × bj = ai AND bj. The
complexity of the multiplier is in adding the partial products.

Implementation

There are several ways to implement a binary multiplier.

Multiple adders

Partial products are added in pairs using binary adders until the entire product is computed
similar to multiplying large numbers by hand. This requires N-1 adders.

Typically those adders are arranged as an adder compressor tree.

Example:

2 Bit by 2 Bit Binary Multiplier
Using a 4 Bit + 4 Bit Adder

(The following are to clarify each level of abstraction)

A simple adder
1-bit adder

http://en.wikipedia.org/wiki/File:Binary_multi1.jpg
http://en.wikipedia.org/wiki/File:Binary_multi1.jpg
http://en.wikipedia.org/wiki/File:Adder.jpg
http://en.wikipedia.org/wiki/File:Adder.jpg

"Ander"
A 1x4 bit Ander

4-bit Adder
Using 4 1-bit adders

15. ADDITIONAL TOPICS

1. Inhibit circuits

2. Code converters using IC’s, Excess-3 adder & subtractor

3. Parity bit generator

4. Programming

http://en.wikipedia.org/wiki/File:Ander.jpg
http://en.wikipedia.org/wiki/File:Ander.jpg
http://en.wikipedia.org/wiki/File:Fourbitadder.jpg
http://en.wikipedia.org/wiki/File:Fourbitadder.jpg

16. University previous Question papers

17. Question Bank

UNIT- I

1. a. Simplify the following Boolean expressions.

i.A’C’ + ABC + AC’ to three literals

ii. (x’y’ + z)’ + z + xy + wz to three literals

iii.A’B(D’ + C’D) + B(A +A’CD) to one literal

iv.(A’ + C)(A’ + C’)(A + B + C’D) to four literals

b. Obtain the complement of the following Boolean expressions.

i.B’C’D + (B + C + D)’ + B ’C’D’E

ii.AB + (AC)’ + (AB + C)

iii.A’B’C’ + A'BC’ + AB’C’ + ABC’

iv.AB + (AC)’ + AB’C

2. a. Draw the NAND logic diagram that implements the complement of the function.

F(A,B,C,D) = ∑ (0,1,2,3,4,8,9,12)

 b.Obtain the complement of the following Boolean expressions.

 i.AB + A(B + C) + B’(B + D)

 ii.A + B + A’B’C [4]

 c.Obtain the dual of the following Boolean expressions

 i.A’B + A’BC’ + A’BCD + A’BC’D’E

 ii.ABEF + ABE’F’ + A’B’EF

3. a.Express the following functions in sum of Minterms and product of Maxterms.

 i.F (A,B,C,D) = B’D + A’D + BD

ii.F(x,y,z) = (xy + z)(xz + y)

b. Obtain the complement of the following Boolean expressions. [8]

 i.(AB’ + AC’)(BC + BC’)(ABC)

ii.AB’C + A’BC + ABC

iii.(ABC)’(A + B + C)’

 iv.A + B’C (A + B + C’)

4. Simplify the following Boolean expressions to Minimum no. of literals.

 a.ABC+A’B+ABC’

 b.(BC’+A’D)(AB’+CD’)

c.x’yz+xz

 d.xy+x(wz+wz’)

5. Obtain the Dual of the following Boolean expressions.

 a.AB+A(B+C)+B’(B+D)

b.A+B+A‘B’C

 c.A’B+A’BC’+A’BCD+A’BC’D’E

 d.ABEF+ABE’F’+A’B’EF

6. Express the following functions in sum of minterms and product of maxterms.

 a.(xy+z) (y+xz)

 b.B’D+A’D+BD

7.Obtain the complement of the following Boolean expressions

 a.AB’C+AB’D+A’B

b.A’B’C+ABC?+A’B’C’D

c.ABCD+ABC’D’+A’B’CD

 .d. AB+ABC’

8. Simplify the following Boolean expressions

 a.A’C’+ABC+AC’ to three literals

 b.(x’y’+z)’+z+xy+wz to three literals

 c.A’B(D’+C’D)+B(A+A’CD) to one literal

 d.(A’+C)(A’+C’)(A+B+C’D) to four literals

9. Obtain the complement of the following Boolean expressions

 a.B’C’D+(B+C+D)’+B’C’D’E

 b.AB+(AC)’+(AB+C)

 c.A’B’C’+A’BC’+AB’C’+ABC’

 d.AB+(AC)’+AB’C

10. For the given Boolean function F=xy’z+x’y’z+w’xy+wx’y+wxy

 a. Draw the logic diagram

 b. Simplify the function to minimal literals using Boolean algebra.

11. Obtain the Dual of the following Boolean expressions

 a. AB’C+AB’D+A’B’

 b.A’B’C+ABC’+A’B’C’D

12. State and prove the following Boolean laws:

 a.Commutative

 b.Associative

 c.Distributive

13. Find the complement of the following Boolean functions and reduce them to

Minimum number of literals:

 a.(bc’+ a’d) (ab’ + cd’)

 b.b’d + a’bc’ + acd + a’bc

 c.Which gate can be used as parity checker? Why?

14. a.Simplify the following Boolean functions to minimum number of literals:

 i.(a + b)’ (a’ + b’)’

 ii.y(wz’ + wz) + xy

 b.Prove that AND-OR network is equivalent to NAND-NAND network.

c.State Duality theorem. List Boolean laws and their Duals.

15.a.State Duality theorem. List Boolean laws and their Duals.

 b.Simplify the following Boolean functions to minimum number of literals:

 i.F = ABC + ABC’ + A’B

 ii.F = (A+B)’ (A’+B’)

c.Realize XOR gate using minimum number of NAND gates

17. a.State and prove Boolean laws related to OR, AND, NOT gates

 b.Given Boolean expression AB’+A’B = C. Show that AC’+A’C = B.

 c.Prove that OR-AND network is equivalent to NOR-NOR network.

UNIT - II

18. Implement the following functions using appropriate DECODER

 a.F1 = ∑m(2,4,6,8,12)

 b.F2 =∑m(1,3,6,7,9,10)

 c.F3 = ∑m(1,3,4,5,6,9,12,14)

 d.F4 =∑m(2,4,8)

19. Prove the following identities by writing the truth tables for both sides:

 a.X.(Y + Z) = (X.Y) +(X .Z)

 b.(X.Y.Z)’ = X’ + Y’ +Z’

 c.X.(X +Y) = X

 d.X + X’Y = X + Y

20. Define the following terms

 a.Boolean function

 b.Sum of products form

 c.Product of sum form

d.Dont care conditions

1. (a) Write short note on prime implicant chart.

(b) Minimize following function using Tabular minimization.

F (A, B, C, D) = ∑m(6, 7, 8, 9) + ∑d(10, 11, 12, 13, 14, 15).

2.(a) Design a logic circuit Using minimum number of Basic gates for the following Boolean

expression.

(b) Reduce the following expression using Karnaugh map. (B’ A’ + A’B + AB’)

 (c) Find the out put of a four variable K-map, when all the cells are filled with logic LOW.

3.(a) Simplify the Boolean function using K-map

F= Pm(0, 1, 2, 4, 7, 8, 12, 14, 15, 16, 17, 18, 20, 24, 28, 30, 31) [10]

(b) Simplify the Boolean expression using K-map

4.(a) Reduce the following function using K- map and implement it in AOI logic as

well as NOR logic F= ∑M(0, 1, 2, 3, 4, 7)

(b) What do you mean by K-map? Name its advantages and disadvantages

5.(a) Reduce the following function using K- map and implement it in AOI logic as

well as NOR logic F= ∑M(0, 1, 2, 3, 4, 7)

(b) What do you mean by K-map? Name its advantages and disadvantages

6.For the truth table given below , find the minimal expression for the out put (Y) using K-map

A B C D Y A B C D Y A B C D Y

0 0 0 0 1 0 1 1 0 1 1 0 1 1 0

0 0 0 1 0 0 1 1 1 0 1 1 0 0 1

0 0 1 0 1 1 0 0 0 0 1 1 0 1 0

0 0 1 1 0 1 0 0 1 1 1 1 1 0 1

0 1 0 0 1 1 0 1 0 0 1 1 1 1 0

0 1 0 1 1

 b) Expand A+BC’+ABD’+ ABCD to Minterms and Max terms.

7.(a) What is a cell of a K-map? What is meant by pair, a quad, and an octet of a map and how many

variables are eliminated?

(b) Reduce the following function using K- map and implement it using NAND

Logic. F= ∑m(0, 2, 3, 4, 5, 6,)

8.(a) What do you mean by don’t care combinations?

(b) What you mean by min terms and max terms of Boolean expressions.

(c) Simplify the Boolean function using K-map

F= ∑m(0, 1, 3, 4, 5, 6, 7, 8, 9) + ∑d(10, 11, 12, 13, 14, 15)

9.(a) What are the advantages of Tabulation method over K-map?

(b) Simplify the following Boolean function using Tabulation method.

Y(A,B,C,D) = ∑(2,3,5,7,8,10,12,13)

10.Simplify the following Boolean expressions using K-map and implement them using NOR gates:

(a) F(ABCD) = AB’C’+AC+A’CD’

(b) F(WXYZ) = W’X’Y’Z’ + WXY’Z’+W’X’YZ+WXYZ

1. Explain the type of Hazard if any in the EXCLUSIVE - OR circuit made by five NAND gates

and the EXCLUSIVE ?OR circuit made by four NAND gates as shown in figure have any static

Hazard or Dynamic Hazard?

2.

2. A circuit receives a 4-bit Excess-3 code. Design a minimal circuit to detect the decimal numbers 0,

1, 4, 6, 7 and 8.

3. (a) Implement the following Boolean function using a 8:1 multiplexer considering ‘C’ as the input

and A,B,C as selection lines. F(ABCD) = AB’ +BD+ B’CD’

(b) Draw the Gate level diagram of a Decimal to BCD encoder.

4. (a) Design a Excess-3 adder using 4-bit parallel binary adder and logic gates.

(b) Draw the logic diagram of a single bit comparator

5. (a) Design a combinational logic to subtract one bit from the other. Draw the logic diagram using

NAND and NOR gates.

(b) Explain the working of a serial adder

6.(a) Implement the following multiple output combinational logic using a 4 line to

16 line Decoder

Y1= A’B’C’D’ + A’B’CD+ A’B’CD’+A’BCD’+AB’CD’+AB’CD

Y2=A’B’C’D+A’BC’D’+A’BC’D+ABC’D

Y3=A’BCD+ABCD’+ABCD

(b) Explain the terms Multiplexing and De multiplexing.

7. A combinational circuit is defined by the following three functions

F1 = x’y’+xyz’ F2=x’+y F3 = xy+x’y’

Design the circuit with a decoder and external gates.

8. (a) Design 4-bit odd parity generator. Mention truth table.

(b) Using 4 MSI circuits construct a binary parallel adder to add two 16-bit binary numbers. Label all

carries between the MSI circuits.

9. (a) Implement the following Boolean functions using decoder and OR gates:

F1(A,B,C,D) = ∑(2,4,7,9)

F2(A,B,C,D) = ∑(10,13,14,15)

10.(a) What is decoder? Construct 3*8 decoder using logic gates and truth table.

(b) What is Encoder? Design Octal to Binary Encoder.

UNIT- III

1. Classify the required circuits into synchronous, asynchronous, pulse mode with suitable

examples.

2. Draw the circuit of JK master slave flip-flop with active high clear & active low preset &

explain.

3. Draw the circuit of master slave RS flip-flop & explain its operation with the help of truth table.

4. Discuss the disadvantages due to level triggering.

5. Convert T flip-flop to D flip-flop.

6. What is the advantage of choosing D flip flop in sequential circuits. Explain with an example.

UNIT- IV

7. Compare synchronous & asynchronous circuits

8. Using a shift register how do you obtain a circular shift.

9. Design & implement 2 bit comparator using logic gates.

10. Draw the block diagram of a 4-bit serial adder & explain its operation.

11. Design of MOD- N Synchrounous Counter.

12. Design ripple and Johnson ring counter.

UNIT- V

1. Draw the diagram of melay type FSM for serial adder..

2. Draw the circuit for moore type ASM

3. Distinguish between melay&moore machines

4. Explain merger chart methods of minimal convertible.

5. A clocked sequential circuit is provided with a single input x & single output z. Whenever the

input produces a string of pulses 111 or 000 & at the end pof the sequence it produces an

output z=1 & overlapping is allowed. Obtain state diagram.

6. Explain the following related to sequential circuits with suitable examples. State diagram.

7. Design a sequence detector that detects the overlapping sequence of 011010 using T flip

flops.

8. Obtain the state table & state diagram for a sequence detector to recognize the occurrence of

sequence bits 110 & 001.

9. Design a synchronous sequential circuit that has one input x & one output z. The circuit adds

the bits that are coming on the input x & produces the sum bit on the output z. Design such a

serial adder circuit using T flip flops.

10. Obtain state table & state diagram for a sequence detector to recognize the occurrence of

sequence bits 110 & 001. Design the logic circuit using JK flip flops.

11. Explain in detail block diagram of ASM chart.

12. Show that 8 exit paths in an ASM block emanating from the decision boxes that check the 8

possible binary values of three control variables x, y,z.

13. Explain in detail melay state diagram & ASM chart with an example.

14. Draw the state diagram of sequence detector which is designed to detect the pattern 1001 &

allowing the overlapping in the input sequences.

15. Design a sequential logic circuit of a 4 bit counter to start counting from 0000 to 1000 & this

process should go on. Draw the ASM chart & design the data processing unit.

16. Design the ASM chart, data path circuit, control circuit using multiplexers for binary

multiplier.

17. Design a synchronous sequential circuit which goes through the following

states1,3,5,3,6,1,3,5.

18. Design control circuit for ASM chart using D flip flop & decoder.

19. Draw the portion of an ASM chart that specifies the conditional operation to increment the

register R during the state T1 & transfer to the state T2, if control inputs z & y are 1 & 0

respectively.

20. Design a synchronous sequential circuit that works as a decade counter.

18. Assignment topics

UNIT-I

1) (a) Convert the following (258)10 = (?) 2 = (?) 8 = (?) 16

 (b) Generate the hamming code for the data 1011.

2) (a) State and prove the duality theorem.

 (b)Reduce the following Boolean expression using theorems.

F = A’B’C+ABC+A’BC+ABC’+A’B’C’

3) (a) 11011 + 101101

(b) 101011 – 110011 using 2’s complement

4) What are Universal Gates? Realize all the logic gates using NAND.

5) A receiver with even parity Hamming code is received the data as 101110110100.

Determine the correct code and what is the original message.

6) (a) Convert the following into canonical form F = A’B+C

(b)Reduce the following Boolean expression using theorems.

F = [A+ (BC)’]’+ (AB’+ABC)

7) (a) Convert the following (527)10 = (?) Gray = (?) BCD = (?) XS-3

 (b)Generate the hamming code for the data 1101.

8) What are universal gates? Realize all logic gates using NOR Gates.

UNIT-II

1). Simplify the following expressions using K-Map and realize with NAND gates. F =

πM (1, 2, 3, 8, 9, 10, 11, 14). πd (7,15)

2). Design the logic circuit that coverts 4 bit binary data to gray code.

3) Simplify the following expressions using K-Map and realize with NAND gates.

 F = ∑m (0,2,5,9,15) + ∑d(6,7,8,10,12,13)

4) Implement the following using 8X1 MUX. F = (0, 1, 3, 4, 6, 8, 15)

5) Simplify the following expressions using K-Map and realize with NOR gates. F =

AB’C + A’B’C + A’BC +AB’C’ + A’B’C’.

6) Design and explain 3 to 8 decoder.

7) Minimize the following function using tabular method and find the essentials.

8) Realize 16X1 MUX using two 4X 1 MUX.

UNIT-III

1. What is the drawback of JK Flip Flop. How is it eliminated in Master Slave J-K Flip-Flop. Explain
with state diagram and characteristic table.

 2. Write the differences between synchronous and asynchronous counters.

 3. Convert JK Flip Flop to D Flip Flop and T Flip Flop.

4. Differentiate between latch and flip-flop.

5. Define: characteristics table, excitation table, race around condition.

6. Compare combinational and sequential circuit from all aspects.

UNIT-IV

1. Design a modulo - 10 ripple counter and explain its timing diagram.

2. Design a Mod-6 asynchronous counter using J-K Flip Flops.

3. Differentiate between Combinational and Sequential Circuits with examples.

4. Design a Decade counter using SR Flip Flops.

Unit – V

1. Differentiate between Mealy and Moore machine with examples.

2. Find the equivalence partition and reduced table for the given state machine.

P.S N.S. , O/P

X = 0 X = 1

A B,0 E,0

B E,0 D,0

C D,1 A,0

D B,1 E,0

E C,0 D,0

3. Find the minimal cover table for the given machine using Merger graph.

 P.S N.S,Z

00 01 11 10

A A,0 --,-- E,-- B,1

B E, -- C,1 B,-- --,--

C --,-- B,0 --,1 D,0

D A,0 --,-- F,1 B,--

E B,0 --,-- B,0 --,--

F --,-- C,1 --,0 C,1

4. Convert the following Mealy machine into a corresponding Moore machine.

 state table is given. prepare examples

5. What are the capabilities and limitations of FSMs?

6. Construct the compatibility graph and obtain the minimal cover table for given machine.

PS NS,Z

X1 X2

A --,-- F,0

B B,0 C,0

C E,0 A,1

D B,0 D,0

E F,1 D,0

F A,0 --,--

7. Obtain set of maximal compatibles for machine shown using Merger table.

PS NS,Z

X1 X2

A E,0 B,0

B F,0 A,0

C E,- C,0

D F,1 D,0

E C,1 C,0

F D,- B,0

8. Draw and explain an ASM chart of a binary multiplier.

9. Draw an ASM chart and state table for 2 bit UP/DOWN Counter having control input M, if M = 1;

UP Counting & M = 0; DOWN Counting. The circuit has to generate output 1 whenever the count

becomes minimum or maximum.

10. What are the salient features of an ASM chart.

11. What are the notations used in the ASM Chart.

19. Unit-wise quiz questions and long answer questions

20. Tutorial Problems:

TUTORIAL-I

Converting from binary, hexadecimal and octal to decimal

binary2 -> decimal

11012 -> decimal

First write 2 to the power of the numbers 0,1,2,3,...

23 22 21 20

Now change them to their real values.

8 4 2 1

Now put the binary number underneath the other numbers and multiply the top number

by the number beneath it and put the answer underneath the other 2 with + between

each number and add the bottom row together to get your final answer.

8 4 2 1

1 1 0 1

8+4+0+1 = 13

11012 -> 13

hexadecimal16 -> decimal

Once again you use 16 instead of 2.

1F16 -> decimal

161 160

16 1

1 F

16+F = 16 + 15 = 31

1F16 -> 31

octal8 -> decimal

258 -> decimal

81 80

8 1

2 5

16+5 = 21

158 -> 21

TUTORIAL - II

Subtracting the numbers using two’s complement

The most common way of subtracting binary numbers is done by first taking the

second value (the number to be subtracted) and apply what is known as two's

complement, this is done in two steps:

1. complement each digit in turn (change 1 for 0 and 0 for 1).

2. add 1 (one) to the result.

note: the first step by itself is known as one's complement.

By applying these steps you are effectively turning the value into a negative number,

and as when dealing with decimal numbers, if you add a negative number to a positive

number then you are effectively subtracting to the same value.

In other words 25 + (-8) = 17, which is the same as writing 25 - 8 = 17.

An example, let's do the following subtraction 11101011 - 01100110 (23510 - 10210

NOTE: When subtracting binary values it is important to maintain the same amount of

digits for each number, even if it means placing zeroes to the left of the value to make

up the digits, for instance, in our example we have added a zero to the left of the value

1100110 to make the amount of numerals up to 8 (one byte) 01100110.

First we apply two's complement to 01100110

which gives us 10011010.

Now we need to add 11101011 + 10011010, however when you do the addition you

always disregard the last carry, so our example would be:

which gives us 10000101, now we can convert this value into decimal, which gives

13310

So the full calculation in decimal is 23510 - 10210 = 13310 (correct !!)

Binary multiplication

Example 1

Example 2

Example 3

TUTORIAL - III

Subtracting the numbers using 9’s complement & 10’s

complement

 To subtract a decimal number y from another number x using the method of

complements, the ten's complement of y (nines' complement plus 1) is added to x.

Typically, the nines' complement of y is first obtained by determining the complement

of each digit. The complement of a decimal digit in the nines' complement system is

the number that must be added to it to produce 9. The complement of 3 is 6, the

complement of 7 is 2, and so on. Given a subtraction problem:

 873 (x)

- 218 (y)

The nines' complement of y (218) is 781. In this case, because y is three digits long,

this is the same as subtracting y from 999.

Next, the sum of x, the nines' complement of y, and 1 is taken:

 873 (x)

+ 781 (nines' complement of y)

=====

 1654

-1000 (y + nines' complement of y + 1) or (y + tens' complement of y)

=====

 654

The first "1" digit is then dropped, in an effort to keep the same digits as the original,

giving 654. This is not yet correct. We have essentially added 999 to the equation in

the first step. Then we remove 1000 when we drop the first 1 in the answer (above) this

will make the answer we get one less than the correct answer. To fix this, we must add

1 to the answer.

 654

 +1

====

 655

Adding a 1 gives 655, the correct answer.

If the subtrahend has fewer digits than the minuend, leading zeros must be added

which will become leading nines when the complement is taken. For example:

 48032 (x)

- 391 (y)

becomes the sum:

 48032 (x)

+ 99608 (nines' complement of y)

=======

 147640

Dropping the "1" yields 47640, and adding the dropped "1" to 47640 gives the answer:

47641.

Binary addition

Adding binary numbers is a very simple task, and very similar to the longhand addition

of decimal numbers. As with decimal numbers, you start by adding the bits (digits) one

column, or place weight, at a time, from right to left. Unlike decimal addition, there is

little to memorize in the way of rules for the addition of binary bits:

0 + 0 = 0

1 + 0 = 1

0 + 1 = 1

1 + 1 = 10

1 + 1 + 1 = 11

Just as with decimal addition, when the sum in one column is a two-bit (two-digit)

number, the least significant figure is written as part of the total sum and the most

significant figure is "carried" to the next left column. Consider the following examples:

. 11 1 <--- Carry bits -----> 11

. 1001101 1001001 1000111

. + 0010010 + 0011001 + 0010110

. ------------- --- --------- ------------

. 1011111 1100010 1011101

The addition problem on the left did not require any bits to be carried, since the sum of

bits in each column was either 1 or 0, not 10 or 11. In the other two problems, there

definitely were bits to be carried, but the process of addition is still quite simple.

TUTORIAL-IV

Digital logic gates

 Digital logic gates, which are also known as combinational logic gates or

simply 'logic gates', are digital IC's whose output at any time is determined by the

states of its inputs at that time. Since logic gates are digital IC's, their input and output

signals can only be in one of two possible digital states, i.e., logic '0' or logic '1'. Thus,

the logic state in which the output of a logic gate will be put in depends on the logic

states of each of its individual inputs.

The primary application of logic gates is to implement 'logic' in the flow of digital

signals in a digital circuit. Logic in its ordinary sense is defined as a branch of

philosophy that deals with what is true and false, based on what other things are true

and false. This essentially is the function of logic gates in digital circuits - to

determine which outputs will be true or false, given a set of inputs that can either be

true (logic '1') or false (logic '0').

The response output (usually denoted by Q) of a logic gate to any combination of

inputs may be tabulated into what is known as a truth table. A truth table shows each

possible combination of inputs to a logic gate and the combination's corresponding

output. Table 1, which describes the various types of logic gates, provides a truth table

for each of them as well.

Interestingly, the operation of logic gates in relation to one another may be

represented and analyzed using a branch of mathematics called Boolean

Algebra which, like the common algebra, deals with manipulation of

expressions to solve or simplify equations. Expressions used in Boolean

Algebra are called, well, Boolean expressions.

http://www.siliconfareast.com/boolean.htm
http://www.siliconfareast.com/boolean.htm

Table 1. Logic Gates and their Properties

Gate Description Truth Table

AND

Gate

The AND gate is a logic gate

that gives an output of '1' only

when all of its inputs are

'1'. Thus, its output is '0'

whenever at least one of its

inputs is '0'. Mathematically, Q

= A · B.

A B
Output

Q

0 0 0

0 1 0

1 0 0

1 1 1

OR Gate

The OR gate is a logic gate that

gives an output of '0' only when

all of its inputs are '0'. Thus, its

output is '1' whenever at least

one of its inputs is '1'.

Mathematically, Q = A + B.

A B
Output

Q

0 0 0

0 1 1

1 0 1

1 1 1

NOT

Gate

The NOT gate is a logic gate

that gives an output that is

opposite the state of its

input. Mathematically, Q = A.

A Output Q

0 1

1 0

NAND

Gate

The NAND gate is an AND

gate with a NOT gate at its end.

Thus, for the same combination

of inputs, the output of a

NAND gate will be opposite

that of an AND gate.

Mathematically, Q = A · B.

A B
Output

Q

0 0 1

0 1 1

1 0 1

1 1 0

NOR

Gate

The NOR gate is an OR gate

with a NOT gate at its end. Thus,

for the same combination of

inputs, the output of a NOR gate

A B
Output

Q

will be opposite that of an OR

gate. Mathematically, Q = A + B.

0 0 1

0 1 0

1 0 0

1 1 0

EXOR

Gate

The EXOR gate (for 'EXclusive

OR' gate) is a logic gate that

gives an output of '1' when only

one of its inputs is '1'.

A B
Output

Q

0 0 0

0 1 1

1 0 1

1 1 0

There are several kinds of logic gates, each one of which performs a specific function. These are the:

1) AND gate; 2) OR gate; 3) NOT gate; 4) NAND gate; 5) NOR gate; and 6) EXOR gate. Table 1

above presents these and their characteristics.

TUTORIAL - V

Minimization of Boolean expressions

1. Z = f(A,B,C) = + B + AB + AC

= (B +) + A(C + B)

= (B +) + A(C + B) from T10b

= B + + AC + AB

= B(+ A) + + AC from T9a and T8b

= B + + AC

Z = f(A,B,C,D) = B + B + BC + A

= B + B(C +) + (B + A) using B (twice) T4a

= B + B + (B + A) from T9a, T8b and T10b

= B(1 +) + B + A from T8a

= B + B + A from T8a

= B(1 + + A

= B + A from T8a

2. Z = f(A,B,C,D) = AB + AB D + A D + ABCD + A CD + ABC + A C

= AB + ABC + A C + A D from T9a and T8b

= AB + AC + A D from T9a and T8b

= A(B + D) + AC

= A(B + D) + AC from T10a

= AB + AD + AC

Expressing the functions in SOP terms

Two step approach to represent three variables in term of Minterms:-

Step1: Represent the Minterm needs to be considered for the function by ‘1’

Step2: Take the OR of all Minterms to represent the function.

The Function of Minterms F = x’y’z + x’yz’ + xy’z + xyz’ + xyz

F = x (y + y’)(z + z’) + yz (x + x’) + xy (z + z’)

= xyz + xyz’ + xy’z + xy’z’ + xyz + x’yz + xyz + xyz’

= xyz + xyz’ + xy’z + xy’z’ + x’yz

Expressing the functions in POS terms

Representation of Boolean Function in Product of Maxterms or Canonical Forms

Product of Maxterms can be simply obtained by taking the complement of sum of

Minterms from the Truth Table.

F1 = (x + y + z)(x + y’ + z’)(x’ + y + z)

Example: Represent F = x + yz + xy in Product of Sum terms

F = (x + yz + x)(x + yz + y)

= (x + yz)(x + y +yz)

= (x + y)(x +z)(x + y + y)(x + y + z)

= (x +y)(x + z)(x + y)(x + y + z)

= (x +y + zz’)(x + z + yy’)(x +y +z)

= (x + y + z)(x +y + z’)(x + z + y)(x + z + y’)(x + y + z)

= (x + y + z)(x + y + z’)(x + y’ +z)

TUTORIAL - VI

Duality principle

Duality Principle states that every algebraic expression deducible from the

postulates of Boolean algebra remains valid if the operators and identity elements

are interchanged.

 Postulates a and b

Postulate 2 x + 0 = x x • 1 = x

Postulate 3, Commutative x + y = y + x xy = yx
Postulate 4, Distributive x (y + z) = xy

+ xz
x + yz = (x + y)(x
+ z) Postulate 5 x + x’ = 1 x • x’ = 0

Theorems a and b

Theore
m

a b
Theorem 1 x + x = x x•x = x
Theorem 2 x + 1 = 1 x • 0 = 0
Theorem 3,
Involution

(x’)’ = x
Theorem 4,
Associative

x + (y + z) = (x +
y) + z

x • (y• z) = (x • y)
• z Theorem 5,

DeMorgan
(x + y)’ = x’y’ (x•y)’ = x’ + y’

Theorem 6,
Absorption

x + xy = x x (x + y) = x

Prove: (A*B)*(A + B) = 0

(A*B)*(A + B) = (A*B)*A + (A*B)*B) by distributive postulate

= (A*A)*B + A*(B*B) by Associativity postulate

= 0*B + A*0 by Complement postulate

= 0 + 0 by Nullity theorem

= 0 by identity theorem

(A*B)*(A + B) = 0

Prove: (A*B) + (A + B) =1

(A*B) + (A + B) =(A + A + B))*(B + A + B) by distributivity

B*C + A = (B + A)*(C + A) (A*B) + (A + B) =(A + A +

B))*(B + B + A) by associativity postulate

=(1 + B)*(1 + A) by complement postulate

=1*1 by nullity theorem

=1 by identity

theorem

(A*B) + (A + B) =1

Since (A*B)*(A + B) = 0, and (A*B) + (A + B) =1,

A*B is the complement of A + B, meaning that A*B=(A + B)';

(note that ' = complement or NOT - double bars don't

show in HTML) Thus A*B= (A + B)''.

The involution theorem states that A'' = A. Thus by the involution

theorem, (A + B)'' = A + B. This proves DeMorgan's Theorem (b).

DeMorgan's Theorem (a) may be proven using a similar approach.

Proof of Theorem 6(a)

x + xy = x

x + xy = x•1 + xy = x(y+1) =x •1 = x

Proof of Theorem 6(b)

x(x+y) = x By duality

TUTORIAL-VIII

Obtaining simplified expression in SOP terms

K-Maps for Sum of Products (SOP)

Consider the Canonical SOP expression F(X,Y,Z) = X’YZ + XY’Z + XYZ’ +

XYZ.

The first step in using K-Maps to simplify this expression is to use the SOP numbering

to represent these as 0’s and 1’s. The negated variable is written as a 0, the plain as a

1. Thus, this function is represented as 011, 101, 110, and 111.

Place a 1 in each of the squares with the “coordinates” given

in the list above. In the K-Map at left, the entry in the top

row corresponds to 110 and the entries in the bottom row correspond to 011, 111, and

101 respectively. Remember that we do not write the 0’s when we are simplifying

expressions in SOP form.

The next step is to notice the physical adjacencies. We group adjacent 1’s into

“rectangular” groupings of 2, 4, or 8 boxes. Here there are no groupings of 4 boxes in

the form or a rectangle, so we group by two’s. There are three such groupings, labeled

A, B, and C.

The grouping labeled A represents

the product term XY. The B group

represents the product term YZ and

the C group represents the product

term XZ. Examine the B grouping:

it has 011 and 111. In this we have

Y and Z staying the same and X

having both values; thus the product

term YZ. This function is XY + XZ + YZ.

the next example is to simplify F(A, B, C) = (3, 5). We shall consider use of K-Maps

to simplify POS expressions, but for now the solution is to convert the expression to

the SOP form F(A, B, C) = (0, 1, 2, 4, 6, 7). We could write each of the six product

terms, but the easiest solution is to write the numbers as binary: 000, 001, 010, 100,

110, and 111.

The top row of the K-Map corresponds to

the entries 000, 010, 100, and 110,

arranged in the order 000, 010, 110, and

100 to preserver logical adjacency. The

bottom row corresponds to the entries 001

and 111. The top row simplifies to C’.

The first column simplifies to A’B’ and

the third column to AB. Thus we have F(A, B, C) = A’B’ + AB + C’.

We next consider a somewhat offbeat example not in a canonical form.

 F(W, X, Y, Z) = W’X’Y’Z’ + W’X’Y’Z + WX’Y’.

The trouble with K-Maps is that the technique is designed to be used only with

expressions in canonical form. In order to use the K-Map method we need to convert

the term WX’Y’ to its equivalent WX’Y’Z’ + WX’Y’Z, thus obtaining a

four-term canonical SOP.

Before actually doing the K-Map, we first apply simple algebraic simplification to F.

 F(W, X, Y, Z) = W’X’Y’Z’ + W’X’Y’Z + WX’Y’

 = W’X’Y’(Z’ + Z) + WX’Y’

 = W’X’Y’ + WX’Y’

 = (W’ + W)X’Y’ = X’Y’

Now that we see where we need to go with the tool, we draw the four-variable K-Map.

F(W, X, Y, Z) = W’X’Y’Z’ + W’X’Y’Z + WX’Y’Z’ + WX’Y’Z. Using

the SOP encoding method, these are terms 0000, 0001, 1000, and 1001. The K-Map is

The first row in the K-Map represents the entries

0000 and 1000. The second row in the K-Map

represents the entries 0001 and 1001. The trick

here is to see that the last column is adjacent to the

first column The four cells in the K-Map are thus

adjacent and can be grouped into a square. We

simplify by noting the values that are constant in

the square: X = 0 and Y = 0.

Obtaining simplified expression in POS terms

K-Maps for POS

K-Maps for Product of Sums simplification are constructed similarly to those for Sum

of Products simplification, except that the POS copy rule must be enforced: 1 for a

negated variable and 0 for a non-negated (plain) variable.

As our first example we consider F(A, B, C) = (3, 5) = (A + B’ + C’)(A’ + B + C’).

Recall that the term (A + B’ + C’) corresponds to 011 and that (A’ + B + C’) to 101.

This is really somewhat of a trick

question used only to illustrate placing of

the terms for POS. Place a 0 at each

location, rather than the 1 placed for SOP.

Note that the two 0’s placed are not

adjacent, so we cannot simplify the expression.

For the next example consider F2 = (A + B + C)(A + B + C’)(A + B’ + C)(A’ + B

+ C). Using the POS copy rule, we translate this to 000, 001, 010, and 100.

Before we attempt to simplify F2, we note that it is a very good candidate for

simplification. Compare the first term 000 to each of the following three terms. The

term 000 differs from the term 001 in exactly one position. The same applies for

comparison to the other two terms. Any two terms that differ in exactly one position

can be combined in a simplification.

We begin the K-Map for POS

simplification by placing a 0 in each of

the four positions 000, 001, 010, 100.

Noting that 000 is adjacent to 001, just

below it, we combine to get 00– or

(A + B). The term 000 is adjacent to

010 to its right to get 0–0 or (A + C).

The term 000 is adjacent to 100 to its “left” to get –00 or (B + C). As a result, we get

the simplified form. F2 = (A + B)(A + C)(B + C)

Just for fun, we simplify this expression algebraically, using the derived Boolean

identity

XXX = X for any Boolean expression X.

F2 = (A + B + C)(A + B + C’)(A + B’ + C)(A’ + B + C)

 = (A + B + C)(A + B + C’)(A + B + C)(A + B’ + C)(A + B + C)(A’ + B +

C)

 = (A + B)(A + C)(B + C)

It is encouraging that we get the same answer.

We now consider simplification of a POS function specified by a truth table.

A B C F

0 0 0 1

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 0

1 1 1 1

We plot two 0’s for the POS representation of the function – one at 010 and one at 110.

The two are combined to get –10, which translates to (B’ + C).

More Examples of K-Maps

The sample at left, based on an earlier

design shows a particularly simple

problem. We find that all the entries in

the K-Map are covered with a single

grouping, thus removing all three

variables. Since the entire K-Map is covered, the simplification is F = 1.

The K-Map at right shows an example

with overlap of two groupings of 1’s.

All 1’s in the map must be covered and

some should be covered twice. The top

row corresponds to X’. We then form

the 2-by-2 grouping at the right to obtain

the term Y1. Thus F = X’ + Y1.

There is another simplification that

should be considered. This corresponds

to two 2-by-2 groupings. The 2-by-2

grouping at the right still corresponds to

Y1. The new 2-by-2 grouping in the

middle gives rise to Y0, so we get

another simplification F = Y0 + Y1.

We close the discussion of SOP K-Maps with the example at right, which shows that

the four corners of the square are adjacent and can be grouped into a 2 by 2 square.

This K-Map represents the terms 0000, 0010, 1000, 1010 or W’X’Y’Z’ +

W’X’YZ’ +

WX’Y’Z’ + WX’YZ’. The values in the square that are constant are X = 0 and

Z = 0, thus the expression simplifies to X’Z’.

TUTORIAL - IX

Finding prime implicants of Boolean functions and determining the

essentials

 In Boolean logic, an implicant is a "covering" (sum term or product term) of

one or more minterms in a sum of products (or maxterms in a product of sums) of a

boolean function. Formally, a product term P in a sum of products is an implicant of

the Boolean function F if P implies F. More precisely:

P implies F (and thus is an implicant of F) if F also takes the value 1 whenever

P equals 1.

where

 F is a Boolean function of n variables.

 P is a product term.

This means that P = > F with respect to the natural ordering of the Boolean space. For

instance, the function

f(x,y,z,w) = xy + yz + w

is implied by xy, by xyz, by xyzw, by w and many others; these are the implicants of f.

A prime implicant of a function is an implicant that cannot be covered by a more

general (more reduced - meaning with fewer literals) implicant. W.V. Quine defined a

prime implicant of F to be an implicant that is minimal - that is, if the removal of any

literal from P results in a non-implicant for F. Essential prime implicants are prime

implicants that cover an output of the function that no combination of other prime

implicants is able to cover.

http://en.wikipedia.org/wiki/Boolean_logic
http://en.wikipedia.org/wiki/Minterms
http://en.wikipedia.org/wiki/Sum_of_products
http://en.wikipedia.org/wiki/Maxterms
http://en.wikipedia.org/wiki/Product_of_sums
http://en.wikipedia.org/wiki/Product_term
http://en.wikipedia.org/wiki/Sum_of_products
http://en.wikipedia.org/wiki/Boolean_function
http://en.wikipedia.org/wiki/Logical_implication
http://en.wikipedia.org/wiki/Boolean_function
http://en.wikipedia.org/wiki/Product_term
http://en.wikipedia.org/wiki/Literal
http://en.wikipedia.org/wiki/W.V._Quine

Using the example above, one can easily see that while xy (and others) is a prime

implicant, xyz and xyzw are not. From the latter, multiple literals can be removed to

make it prime:

 x, y and z can be removed, yielding w.

 Alternatively, z and w can be removed, yielding xy.

 Finally, x and w can be removed, yielding yz.

The process of removing literals from a Boolean term is called expanding the term.

Expanding by one literal doubles the number of input combinations for which the term

is true (in binary Boolean algebra). Using the example function above, we may expand

xyz to xy or to yz without changing the cover of f. [1]

The sum of all prime implicants of a Boolean function is called the complete sum of

that function.

Simplification using Karnaugh maps

A Karnaugh map provides a pictorial method of grouping together expressions with

common factors and therefore eliminating unwanted variables. The Karnaugh map can

also be described as a special arrangement of a truth table.

The diagram below illustrates the correspondence between the Karnaugh map and the

truth table for the general case of a two variable problem.

The values inside the squares are copied from the output column of the truth table,

therefore there is one square in the map for every row in the truth table. Around the

edge of the Karnaugh map are the values of the two input variable. A is along the top

and B is down the left hand side. The diagram below explains this:

http://en.wikipedia.org/wiki/Implicant#cite_note-0
http://www.ee.surrey.ac.uk/Projects/Labview/common/glossary.html#tt

The values around the edge of the map can be thought of as coordinates. So as an

example, the square on the top right hand corner of the map in the above diagram has

coordinates A=1 and B=0. This square corresponds to the row in the truth table where

A=1 and B=0 and F=1. Note that the value in the F column represents a particular

function to which the Karnaugh map corresponds.

Example 1:

Consider the following map. The function plotted is: Z = f(A,B) = A + AB

 Note that values of the input variables form the rows and columns. That is the

logic values of the variables A and B (with one denoting true form and zero

denoting false form) form the head of the rows and columns respectively.

 Bear in mind that the above map is a one dimensional type which can be used to

simplify an expression in two variables.

 There is a two-dimensional map that can be used for up to four variables, and a

three-dimensional map for up to six variables.

Using algebraic simplification,

Z = A + AB

Z = A(+ B)

Z = A

Variable B becomes redundant due to Boolean Theorem T9a.

http://www.ee.surrey.ac.uk/Projects/Labview/boolalgebra/index.html#booleantheorems

1 1

2

Referring to the map above, the two adjacent 1's are grouped together. Through

inspection it can be seen that variable B has its true and false form within the group.

This eliminates variable B leaving only variable A which only has its true form. The

minimised answer therefore is Z = A.

Example 2:

Consider the expression Z = f(A,B) = + A + B plotted on the Karnaugh map:

Pairs of 1's are grouped as shown above, and the simplified answer is obtained by

using the following steps:

Note that two groups can be formed for the example given above, bearing in mind that

the largest rectangular clusters that can be made consist of two 1s. Notice that a 1 can

belong to more than one group.

The first group labelled I, consists of two 1s which correspond to A = 0, B = 0 and A =

1, B = 0. Put in another way, all squares in this example that correspond to the area of

the map where B = 0 contains 1s, independent of the value of A. So when B = 0 the

output is 1. The expression of the output will contain the term

For group labelled II corresponds to the area of the map where A = 0. The group can

therefore be defined as . This implies that when A = 0 the output is 1. The output is

therefore 1 whenever B = 0 and A = 0

Hence the simplified answer is Z = +

TUTORIAL-X

COMPARATORS

http://www.ee.surrey.ac.uk/Projects/Labview/common/glossary.html#Adj

 4-Bit magnitude comparator

BCD adder

Binary to Gray code converter

G2 B2

G

G

B1

1

B0

0

TUTORIAL-XI

Design of clocked JK-FF

JK Flip-flop

Both the S and the R inputs of the previous SR bistable have now been

replaced by two inputs called the J and K inputs, respectively after its

inventor Jack Kilby. Then this equates to: J = S and K = R.

The two 2-input AND gates of the gated SR bistable have now been

replaced by two 3-input NAND gates with the third input of each gate

connected to the outputs at Q and Q. This cross coupling of the SR flip-flop

allows the previously invalid condition of S = "1" and R = "1" state to be

used to produce a "toggle action" as the two inputs are now interlocked. If

the circuit is "SET" the J input is inhibited by the "0" status of Q through

the lower NAND gate. If the circuit is "RESET" the K input is inhibited by

the "0" status of Q through the upper NAND gate. As Q and Q are always

different we can use them to control the input. When both inputs J and K

are equal to logic "1", the JK flip-flop toggles as shown in the following

truth table.

The Truth Table for the JK Function

same as

for the

SR Latch

J K Q Q Description

0 0 0 0
Memory

no change
0 0 0 1

0 1 1 0

Reset Q » 0

0 1 0 1

1 0 0 1

Set Q » 1

1 0 1 0

toggle

action

1 1 0 1

Toggle

1 1 1 0

Then the JK flip-flop is basically an SR flip-flop with feedback which

enables only one of its two input terminals, either SET or RESET to be

active at any one time thereby eliminating the invalid condition seen

previously in the SR flip-flop circuit. Also when both the J and the K inputs

are at logic level "1" at the same time, and the clock input is pulsed either

"HIGH", the circuit will "toggle" from its SET state to a RESET state, or

visa-versa. This results in the JK flip-flop acting more like a T-type toggle

flip-flop when both terminals are HIGH.

Although this circuit is an improvement on the clocked SR flip-flop it still

suffers from timing problems called "race" if the output Q changes state

before the timing pulse of the clock input has time to go "OFF". To avoid

this the timing pulse period (T) must be kept as short as possible (high

frequency). As this is sometimes not possible with modern TTL IC's the

much improved Master-Slave JK Flip-flop was developed. This

eliminates all the timing problems by using two SR flip-flops connected

together in series, one for the "Master" circuit, which triggers on the leading

edge of the clock pulse and the other, the "Slave" circuit, which triggers on

the falling edge of the clock pulse. This results in the two sections, the

master section and the slave section being enabled during opposite half-

cycles of the clock signal.

The 74LS73 is a Dual JK flip-flop IC, which contains two individual JK

type bistable's within a single chip enabling single or master-slave toggle

flip-flops to be made. Other JK flip-flop IC's include the 74LS107 Dual JK

flip-flop with clear, the 74LS109 Dual positive-edge triggered JK flip-flop

and the 74LS112 Dual negative-edge triggered flip-flop with both preset

and clear inputs.

Define between latch and flip-flop, Mention the similarities and

differences between them

Latches and flip-flops

In the same way that gates are the building blocks of

combinatorial circuits, latches and flip-flops are the building

blocks of sequential circuits.

While gates had to be built directly from transistors, latches can

be built from gates, and flip-flops can be built from latches. This

fact will make it somewhat easier to understand latches and flip-

flops.

Both latches and flip-flops are circuit elements whose output

depends not only on the current inputs, but also on previous inputs

and outputs. The difference between a latch and a flip-flop is that

a latch does not have a clock signal, whereas a flip-flop always

does.

Latches

How can we make a circuit out of gates that is not combinatorial?

The answer is feed-back, which means that we create loops in the

circuit diagrams so that output values depend, indirectly, on

themselves. If such feed-back is positive then the circuit tends to

have stable states, and if it is negative the circuit will tend to

oscillate.

A latch has positive feedback. Here is an example of a simple

latch:

This latch is called SR-latch, which stands for set and reset.

Flip-flops

Latches are asynchronous, which means that the output changes very soon

after the input changes. Most computers today, on the other hand, are

http://www.labri.fr/perso/strandh/Teaching/AMP/Common/Strandh-Tutorial/gates.html
http://www.labri.fr/perso/strandh/Teaching/AMP/Common/Strandh-Tutorial/combinatorial.html

synchronous, which means that the outputs of all the sequential circuits

change simultaneously to the rhythm of a global clock signal.

A flip-flop is a synchronous version of the latch. To complicate the situation

even more, there are several fundamental types of flip-flops. Here, we shall

only consider a type called master-slave flip-flop.

In addition to the fundamental types of flip-flops, there are minor variations

depending on the number of inputs and how they control the state of the

flip-flop. Here, we shall only consider a very simple type of flip-flop called

a D-flip-flop. A master-slave D-flip-flop is built from two SR-latches and

some gates. Here is the circuit diagram:

The leftmost SR-latch is called the master and the rightmost is called the

slave.

What is master slave flip flop design a clocked master slave

 JK flip-flop

 The Master-Slave Flip-Flop is basically two gated SR flip-flops

connected together in a series configuration with the slave having an

inverted clock pulse. The outputs from Q and Q from the "Slave" flip-flop

are fed back to the inputs of the "Master" with the outputs of the "Master"

flip-flop being connected to the two inputs of the "Slave" flip-flop. This

feedback configuration from the slave's output to the master's input gives

the characteristic toggle of the JK flip-flop as shown below.

The Master-Slave JK Flip-Flop

The input signals J and K are connected to the gated "master" SR flip-flop

which "locks" the input condition while the clock (Clk) input is "HIGH" at

logic level "1". As the clock input of the "slave" flip-flop is the inverse

(complement) of the "master" clock input, the "slave" SR flip-flop does not

toggle. The outputs from the "master" flip-flop are only "seen" by the gated

"slave" flip-flop when the clock input goes "LOW" to logic level "0". When

the clock is "LOW", the outputs from the "master" flip-flop are latched and

any additional changes to its inputs are ignored. The gated "slave" flip-flop

now responds to the state of its inputs passed over by the "master" section.

Then on the "Low-to-High" transition of the clock pulse the inputs of the

"master" flip-flop are fed through to the gated inputs of the "slave" flip-flop

and on the "High-to-Low" transition the same inputs are reflected on the

output of the "slave" making this type of flip-flop edge or pulse-triggered.

Then, the circuit accepts input data when the clock signal is "HIGH", and

passes the data to the output on the falling-edge of the clock signal. In other

words, the Master-Slave JK Flip-flop is a "Synchronous" device as it only

passes data with the timing of the clock signal..

TUTORIAL-XII

Morse and Mealy machines and there comparison

Objectives

There are two basic ways to design clocked sequential circuits.

These are using:

1. Mealy Machine, which we have seen so far.

2. Moore Machine.

The objectives of this lesson

are:

1. Study Mealy and Moore machines

2. Comparison of the two machine types

3. Timing diagram and state machines

Mealy Machine

In a Mealy machine, the outputs are a function of the present state

and the value of the inputs as shown in Figure 1.

Accordingly, the outputs may change asynchronously in response

to any change in the inputs.

Mealy Machine

Figure 1: Mealy Type Machine

In a Moore machine the outputs depend only on the present state as
shown in

Figure 2.

 A combinational logic block maps the inputs and the current

state into the necessary flip-flop inputs to store the appropriate

next state just like Mealy machine.

However, the outputs are computed by a combinational logic block

whose inputs are only the flip-flops state outputs.

 The outputs change synchronously with the state transition

triggered by the

active clock edge.

Figure 2: Moore Type

Machine

Comparison of the Two Machine Types

 Consider a finite state machine that checks for a pattern of ‘10’
and asserts

logic high when it is detected.

The state diagram representations for the Mealy and Moore

machines are shown in Figure 3.

 The state diagram of the Mealy machine lists the inputs with their

associated outputs on state transitions arcs.

 The value stated on the arrows for Mealy machine is of the form

Zi/Xi where

Zi represents input value and Xi represents output value.

 A Moore machine produces a unique output for every state
irrespective of

Inputs.

 Accordingly the state diagram of the Moore machine associates

the output with the state in the form state-notation/output-value.

 The state transition arrows of Moore machine are labeled with the

input value that triggers such transition.

 Since a Mealy machine associates outputs with transitions, an

output sequence can be generated in fewer states using Mealy

machine as compared to Moore machine. This was illustrated in

the previous example.

Figure 3: Mealy and Moore State Diagrams for '10' Sequence

Detector

Procedure of state minimization using merger graph and merger

table

Example problem

Design a gated latch circuit with two inputs, G (gate) and D (data), and one output Q. The

gated latch is a memory element that accepts the value of D when G = 1 and retains this

value after G goes to 0. Once G = 0, a change in D does not change the value of the

output Q.

Solution

State table

State Inputs Output

 D G Q

a 0 1 0

b 1 1 1

c 0 0 0

d 1 0 0

e 1 0 1

f 0 0 1

Primitive Flow table

Informal Merging

Formal Merging

Compatible Pairs

Maximal Compatibles

Reduced Table

Logic Diagram

Draw the diagram of mealy type FSM for serial adder

A serial adder is a digital circuit that can add any two arbitrarily large numbers using a

single full adder. Just as humans, the serial adder operates on one pair of bits/digits at a

time. When you add the two 4–digit numbers 7852 and 1974, for example, you typically

start by adding 2 plus 4 equal 6, then 5 plus 7 equal 12 (place 2 and carry the 1), and so

on. Similarly, given the two 4–bit numbers 1011 and 0110, the serial adder starts by

adding 1 plus 0 equal to 1, and then 1 plus 1 equal to 10 (place 0 and carry the 1), and so

on.

For a general demonstration, both a human person and a serial adder follow the same

sequential method. Given two 4–figure numbers A3A2A1A0 and B3B2B1B0, we add two

figures at a time starting with the least significant pair, and so on. First, we do A0 + B0 =

S0. Second, we do A1 + B1 + carry = S1, and so on; where the S figures represent the sum:

A + B = S.

Notice that in the operation A1 + B1 + carry = S1, carry is not one of the inputs being

added; the inputs being added are A1 and B1. Furthermore, the value of carry does not

depend on the inputs A1 and B1. Carry is simply a given condition, the consequence of

something that happened in the past; namely, A0 + B0.

Therefore, if we were tasked to “build a circuit that can add any two binary numbers

using the sequential method that humans use,” we would treat the carry variable as a state

variable. (In computer engineering talk, any circuit with one or more state variables is

referred to as a finite state machine.)

Since the carry variable can either be 1 or 0, we say that our circuit will be a two states

machine. When the circuit is in the state where carry = 0, the relationship between the

inputs A and B and the output S is such that: if AB = 00 then S = 0; if AB = 01 then S =

1; if AB = 10 then S = 1; and if AB = 11 then S = 0. When the circuit is in the state where

carry = 1, it also follows that: if AB = 00 then S = 1; if AB = 01 then S = 0; if AB = 10

then S = 0; and if AB = 11 then S = 1. We illustrate these relationships in the state

diagram in Figure 1.

Figure 1: State transition diagram for serial adder

FSM

To present the information in the state diagram in table form, we re-label the carry

variable Z (Z for carry–out and z for carry–in) for convenience. We show the tabulated

information in Table 1 below.

From a finite state machine analysis perspective, we say z is the present state of the

machine because z is presently available as one of the inputs to the full adder; Z on the

other hand is the next state because it is one of the variables we are solving for — given

the inputs A, B and the present state (or the carry–in) z.

Given state of door q

AB = 00 AB = 01 AB = 10 AB = 11

AB = 00 AB = 01 AB = 10 AB = 11

Next state Output

z Z S

0 0 0 0 1 0 1 1 0

1 0 1 1 1 1 0 0 1

Table 1: State transition table for serial adder FSM

At this point we can formulate the Boolean expressions for S and Z, where S is the sum output

bit and Z is the carry output bit. Just in case you can’t see the Boolean functions in the Table1,

we recast the transition table as two K–maps in Table 2 for your convenience.

K-map For Z

z/AB 00 01 10 11

0 0 0 0 1

1 0 1 1 1

K-map For S

z/AB 00 01 10 11

0 0 1 1 0

1 1 0 0 1

Table 2: K-maps for the next state variable Z and the output variable S

S = A B z

Z = A • B + A • z + B • z

The reason these Boolean expressions look similar to the full adder equation is because

they are the full adder expression. Here z is the carry–in signal and Z is the carry–out

signal. Since the carry–out of the full adder becomes the carry–in to the full adder on the

next operation, we us a D flipflop to save the carry signal. We use a D flipflop because

we need the data in Z to pass to z intact for the next operation. Any other flipflop will

return some z that may or may not be equal to Z.

TUTORIAL-XIII

Draw ASM chart for 3-bit updown counter

The circuit above is of a simple 3-bit Up/Down synchronous counter using

JK flip-flops configured to operate as toggle or T-type flip-flops giving a

maximum count of zero (000) to seven (111) and back to zero again. Then the 3-

Bit counter advances upward in sequence (0,1,2,3,4,5,6,7) or downwards in reverse

sequence (7,6,5,4,3,2,1,0) but generally, bidirectional counters can be made to

change their count direction at any point in the counting sequence. An additional

input determines the direction of the count, either Up or Down and the timing

diagram gives an example of the counters operation as this Up/Down input

changes state.

Nowadays, both up and down counters are incorporated into single IC that is

fully programmable to count in both an "Up" and a "Down" direction from any

preset value producing a complete Bidirectional Counter chip. Common chips

available are the 74HC190 4-bit BCD decade Up/Down counter, the 74F569 is a

fully synchronous Up/Down binary counter and the CMOS 4029 4-bit

Synchronous Up/Down counter.

21. Known Curriculum Gaps and inclusion of the same in the

lecture schedule:

Shall be provided later, as this has a revised syllabus and the course content is to be studied in

details.

22. Group discussion topics

1. Different Number Systems and their Conversions

2. Boolean algebra and Switching Functions

3. Different Combinational Circuits

4. Sequential Circuits Design

5. Algorithemic State Machines

23. References, Journals, websites and E-links

REFERENCES:
1. Introduction to Switching Theory and Logic Design – Fredriac J Hill, Gerald R Peterson, 3rd Edition,

John Willey and Sons Inc,

2. Digital Fundamentals – A Systems approach – Thomas L Floyd, Pearson, 2013.

3. Digital Logic Design – Ye Brian and HoldsWorth, Elsevier

4. Fundamentals of Logic Design – Charles H. Roth, Thomson Publications, 5th Edition, 2004

5. Digital Logic Applications and Design – John M. Yarbrough, Thomson Publications, 2006

6. Digital logic and state machine design – Comer, 3rd, Oxford 2013.

WEBSITES
1. en.wikipedia.org/wiki/digital-electronics

2. www.encyclopedia.com/doc/1G2-3401200206.html

3. www.worldscibooks.com/engineering/3453.html

JOURNALS

1. Integration of an online digital logic design lab for it education

2. Conference on information technology education (formerly CITC) archive

3. Proceedings of the 9th ACM SIGITE conference on information technology

education

24. Quality Control Sheets

A. Course End Survey:

Course end survey will be collected at the end of the semester.

B. Teaching Evaluation

Quality control department conducts online feedback, two times in the semester.

25. Students list

S.No. Student Name Roll No.

1 SAGADI ROHITH
GOUD 14R11A02

2 AMARANENI
RUCHITHA 14R11A0201

3 ANASURI SAGAR 14R11A0202

4 AVIRENI ARUNA
KUMARI 14R11A0203

5 B NAVEEN KUMAR 14R11A0204

6 B VENKATESH 14R11A0205

7 BANDARI SHIVA
SAI 14R11A0206

8 BANOTH HARISH 14R11A0207

9 BOORA ABHILASH 14R11A0208

10 BUSANI RAVALI 14R11A0209

11 CHETTY
GOUTHAMI 14R11A0210

12 CHIRRA SAHITHI 14R11A0211

13 CHITIKELA ANISH
REDDY 14R11A0212

14 D SHASHANKA SAI 14R11A0213

15 DANDAMUDI
SOWMYA 14R11A0214

16 DHARAVATH ANIL
NAIK 14R11A0215

17 DONKULA HARIKA 14R11A0216

18 GANDI SANKEERTH
GOUD 14R11A0217

19 GARIMELLA
SHARANYA 14R11A0218

20 J ROHITH REDDY 14R11A0219

21 K ABHILASH BABU 14R11A0220

22 KONGARI ADITHYA 14R11A0221

23 KONKAMALLA
VINAY 14R11A0222

24 M SHIVA RAKESH
REDDY 14R11A0223

25 MANDA VIKAS 14R11A0224

26 MINUKURI
MAHESH REDDY 14R11A0225

27 MOHAMMED 14R11A0226

SAIFUDDIN

28 P TULASI 14R11A0227

29 PALEPU AKHILA 14R11A0228

30 PANJALA RAJU
GOUD 14R11A0229

31 PARAMKUSHAM
VENKATA KRISHNA 14R11A0230

32 PARSA VENU 14R11A0231

33 RAMAVATH
BHARGAV NAYAK 14R11A0232

34 SHEELA DIVYA 14R11A0233

35 SIDDIPETA SAI 14R11A0234

36 SINDHUJA
PIPPALLA 14R11A0235

37 SURINENI
SAIKIRAN 14R11A0236

38 THOLICHUKKA
BUCHI RAJU 14R11A0237

39 THOTA MANOHAR 14R11A0238

40 VENKATA RAMANA
BHAKTHAVATSALA 14R11A0239

41 YELLETI
AISHWARYA 14R11A0240

42 YILLA SAI KUMAR 14R11A0241

26. Group-wise students list for discussion topic:

Group-I

1 SAGADI ROHITH
GOUD 14R11A02

2 AMARANENI
RUCHITHA 14R11A0201

3 ANASURI SAGAR 14R11A0202

4 AVIRENI ARUNA
KUMARI 14R11A0203

5 B NAVEEN KUMAR 14R11A0204

6 B VENKATESH 14R11A0205

Group-II

7 BANDARI SHIVA
SAI 14R11A0206

8 BANOTH HARISH 14R11A0207

9 BOORA ABHILASH 14R11A0208

10 BUSANI RAVALI 14R11A0209

11 CHETTY
GOUTHAMI 14R11A0210

12 CHIRRA SAHITHI 14R11A0211

Group-III

13 CHITIKELA ANISH
REDDY 14R11A0212

14 D SHASHANKA SAI 14R11A0213

15 DANDAMUDI
SOWMYA 14R11A0214

16 DHARAVATH ANIL
NAIK 14R11A0215

17 DONKULA HARIKA 14R11A0216

18 GANDI SANKEERTH
GOUD 14R11A0217

Group-IV

19 GARIMELLA
SHARANYA 14R11A0218

20 J ROHITH REDDY 14R11A0219

21 K ABHILASH BABU 14R11A0220

22 KONGARI ADITHYA 14R11A0221

23 KONKAMALLA
VINAY 14R11A0222

24 M SHIVA RAKESH
REDDY 14R11A0223

Group-V

25 MANDA VIKAS 14R11A0224

26 MINUKURI
MAHESH REDDY 14R11A0225

27 MOHAMMED
SAIFUDDIN 14R11A0226

28 P TULASI 14R11A0227

29 PALEPU AKHILA 14R11A0228

30 PANJALA RAJU
GOUD 14R11A0229

Group-VI

31 PARAMKUSHAM
VENKATA KRISHNA 14R11A0230

32 PARSA VENU 14R11A0231

33 RAMAVATH
BHARGAV NAYAK 14R11A0232

34 SHEELA DIVYA 14R11A0233

35 SIDDIPETA SAI 14R11A0234

36 SINDHUJA
PIPPALLA 14R11A0235

Group-VII

37 SURINENI
SAIKIRAN 14R11A0236

38 THOLICHUKKA
BUCHI RAJU 14R11A0237

39 THOTA MANOHAR 14R11A0238

40 VENKATA RAMANA
BHAKTHAVATSALA 14R11A0239

41 YELLETI
AISHWARYA 14R11A0240

42 YILLA SAI KUMAR 14R11A0241

