Coursefile contents:

Cover Page

Syllabus copy

Vision of the department

Mission of the department

PEOs and POs

Course objectives and outcomes

Brief note on the importance of the course and how it fits in to the
curriculum

8. Prerequisites

9. Instructional Learning Outcomes
10.Course mapping with PEOs and POs
11.Class Time Table

12.Individual Time Table

13.Lecture schedule with methodology being used/adopted
14.Detailed notes

15.Additional/missing topics

16.University previous Question papers
17.Question Bank

18.Assignment topics

19.Unit wise questions

20.Tutorial problems

21.Known gaps

22.Discussion topics

23.References, Journals, websites and E-links
24. Quality measurement Sheets

Noas~wWNE

a. course and survey
b. Teaching evaluation
25. Student List

26. GroupWise Student List for discussion topics



GEETHANIJALI COLLEGE OF ENGINEERING AND TECHNOLOGY
Department of Electrical and Electronics Engineering
(Name of the Subject / Lab Course) : NETWORK THEORY

(JNTU CODE -54011) Programme : UG
Branch: EEE VersionNo : 1
Year: 2015-16 Updated on :
Semester: Il No.of pages:

Classification status (Unrestricted / Restricted )

Distribution List :

Prepared by : 1) Name : Dr. S. Radhika
2) Sign
3) Design : Prof

4) Date :05-12-2015

Verified by : 1) Name : * For_ Q.C Only.
2) Sign 1) Name :
3) Design : 2) Sign
4) Date : 3) Design :
4) Date

Approved by : (HOD) 1) Name :
2) Sign

3) Date :




2. Syllabus:

1. Vision of the department

Vision and Mission of the institute

The Mission of the institute
Our mission is to become a high quality premier educational institution, to create technocrats,
by ensuring excellence, through enriched knowledge, creativity and self-development.

The Vision of the institute
Geethanjali visualizes dissemination of knowledge and skills to students, who would eventually
contribute to the well being of the people of the nation and global community.

DEPARTMENT OF EEE

Department of Electronics and Electronics Engineering is established in the year 2006 to meet
the requirements of the Electrical and Electronic industries such as Vijay electrical, BHEL, BEL and society

after the consultation with various stakeholders.

Vision of EEE

To provide excellent Electrical and electronics education by building strong teaching and research

environment



3.Mission of the department

Mission of EEE

i) To offer high quality graduate program in Electrical and Electronics education and to prepare
students for professional career or higher studies.

ii) The department promotes excellence in teaching, research, collaborative activities and positive
contributions to society

2. PEOs and Pos

Program Educational Objectives

Program Educational Objectives of the UG Electrical and Electronics Engineering are:

PEO 1. Graduates will excel in professional career and/or higher education by acquiring
knowledge in Mathematics, Science, Engineering principles and Computational skills.

PEO 2. Graduates will analyze real life problems, design Electrical systems appropriate to the
requirement that are technically sound, economically feasible and socially acceptable.

PEO 3.Graduates will exhibit professionalism, ethical attitude, communication skills, team work in

their profession, adapt to current trends by engaging in lifelong learning and participate in Research &
Development.

Programme Outcomes

The Program Outcomes of UG in Electrical and Electronics Engineering are as follows:

PO 1. An ability to apply the knowledge of Mathematics, Science and Engineering in Electrical
and Electronics Engineering.




PO 2. An ability to design and conduct experiments pertaining to Electrical and Electronics
Engineering.

PO 3. An ability to function in multidisciplinary teams

PO 4. An ability to simulate and determine the parameters such as nominal voltage, current,
power and associated attributes.

PO 5. An ability to identify, formulate and solve problems in the areas of Electrical and
Electronics Engineering.

PO 6. An ability to use appropriate network theorems to solve electrical engineering problems.
PO 7. An ability to communicate effectively.

PO 8. An ability to visualize the impact of electrical engineering solutions in global, economic
and societal context.

PO 9. Recognition of the need and an ability to engage in life-long learning.
PO 10 An ability to understand contemporary issues related to alternate energy sources.

PO 11 An ability to use the techniques, skills and modern engineering tools necessary for
Electrical Engineering Practice.

PO 12 An ability to simulate and determine the parameters like voltage profile and current
ratings of transmission lines in Power Systems.

PO 13 An ability to understand and determine the performance of electrical machines
namely speed, torque, efficiency etc.

PO 14 An ability to apply electrical engineering and management principles to Power
Projects

Mapping of Course with Programme Educational Objectives:

S.No Course code course Semester | PEO 1 PEO 2 PEO 3
component
Network Network
1 Analysis 54011 Theory I 4 4 4




6.Course Objective & Course outcomes:

1. To equip the students with the knowledge and techniques of analyzing Three phase electrical
circuits.

2. Students learn network function representation.

3. Students learn to characterize and analyse networks in both the time and complex frequency
domain.

4. Students learn the concepts of Two-port Network parameters.

5. To introduce the concept of DC and AC transient analysis.

6. To introduce the student to different types of filters.

7. To learn about the use of mathematics, need of different transforms and usefulness of
differential equations for analysis of networks.

8. With this the students will have the knowledge of how to evaluate and analyze any complex
network.

Subject: NETWORK THEORY

CO 1: Learner will be able to apply knowledge of mathematics to solve numerical based on
network simplification and it will be used to analyze the same.

CO 2: Analyze AC and DC transient response of resistance, inductance and capacitance in

terms of impedance.

CO 3: Analyze Three phase circuits.

CO 4: Understand, and calculate the initial conditions of RL, RC circuits.

CO 5: To formulate, solve the differential equations for RL, RC, and RLC circuits and carry out

the transient analysis.

CO 6: Understand, analyze and design prototype LC filters.

CO 7: Characterize and model the network in terms of all network parameters and analyze.

CO 8: Understand and formulate the network transfer function in s-domain and pole, zero

concept.



Mapping of Course outcomes with Programme outcomes:

*When the course outcome weightage is < 40%, it will be given as moderately correlated (1).
*When the course outcome weightage is >40%, it will be given as strongly correlated (2).

POs 112 |3 |4 |5 |6 |7 |8 |9 |10 |11 |12
Network Theory
CO 1: Learner will be ableto | 1 1

apply knowledge of
mathematics to solve
numerical based on network
simplification and it will be
used to analyze the same.

CO 2: Analyze AC and DC 112 |2 |1 |1
transient response of
resistance, inductance and
capacitance in terms of

impedance.

CO 3: Analyze three phase 2 |1 |1 |2
electric circuits.

CO 4: Understand, and 1 1

calculate the
initial conditions of RL, RC
circuits.

CO 5: To formulate, solvethe (12 |2 |1 |2 1 1
differential equations for RL,
RC, and RLC circuits and
carry out the transient
analysis.

CO 6: Understand, analyze 112 (2 |1 |2 1|1 1
and design prototype LC
filters.

CO 7: Characterize and model 2 |1 |1 |2
the network in terms of all
network parameters and
analyze.

CO 8: Understand and 1 2 |1 |2 1 1
formulate the network transfer
function in s-domain and pole,
zZero concepts.

Network Analysis




7.Instructional Learning Outcomes:

Sno

Unit

Objective

Outcome

Three Phase Circuits

. To know the Star and delta type of

connections.

. To find the relation between line and

phase voltages and currents in balanced
systems.

. Analyse and to measure power for

balanced three phase circuit.

. Analyse and to measure power for

unbalanced three phase circuit.

. To know the phase sequence of three

phase system.

. Ability to know the different

connections.

. To be able to know the different

relations.

. To be able to analyse a balanced

three phase circuit.

. To be able to analyse a

unbalanced three phase circuit.
Be able to identify the phase to
phase and phase to neutral
relations.

DC Transient Analysis

. To study the transient response of RL-

series circuit by applying differential

equation and Laplace Transform methods.
. To study the transient response of RC-

series circuit by applying differential

equation and Laplace Transform methods.
. To study the transient response of RLC-

series circuit by applying differential

equation and Laplace Transform methods.
. To study the transient response of RL and

RC-parallel circuit by applying
differential equation and Laplace
Transform methods.

. To study the transient response of RLC-

parallel circuit by applying differential
equation and Laplace Transform methods

. To be able to find the solution of

RL series circuit.

. To be able to find the solution of

RC series circuit.

. To be able to find the solution of

RLC series circuit.

. To be able to find the solution of

RL and RC parallel circuit.

. To be able to find the solution of

RLC parallel circuit.

AC Transient Analysis

. To study the transient response of RL-

series circuit by applying differential

equation and Laplace Transform methods.
. To study the transient response of RC-

series circuit by applying differential

equation and Laplace Transform methods.
. To study the transient response of RLC-

series circuit by applying differential

equation and Laplace Transform methods.
. To study the transient response of RL and

RC-parallel circuit by applying
differential equation and Laplace
Transform methods.

. To be able to find the solution of

RL series circuit.

. To be able to find the solution of

RC series circuit.

. To be able to find the solution of

RLC series circuit.

. To be able to find the solution of

RL and RC parallel circuit.

. To be able to find the solution of

RLC parallel circuit.




5.To study the transient response of RLC-
parallel circuit by applying differential
equation and Laplace Transform methods

Network Functions

1. To introduce to the concept and physical
interpretation of Complex frequency.

2. To introduce the functions of one port and
two port network.

3. To introduce the concept of poles and
zeros and their significance.

4. To study the properties and necessary
conditions for driving point and transfer
functions.

5. To study the time domain response from
pole-zero plot.

1. Be able to understand the concept
of complex frequency.

2. To be able to know the functions
of one port and two port network.

3. Be able to understand the
significance of poles and zeros.

4. Be able to understand the
properties of driving point and
transfer functions.

5. Be able to find the time domain
response from pole-zero plot

Network Parameters-I

To study Z-parameters.

To study Y-parameters.

To study ABCD parameters.

To study hybrid parameters.

To find the relation between all the
parameters.

arwONE

1. To be able to analyse a Z-
network.

2. Be able to analyse a Y-network.

3. Ability to analyse an ABCD
network.

4. To be able to analyse a hybrid
network.

5. To be able to understand the
relation between all the network
parameters.

Network Parameters-I1

1. To study the series connection of two-port.
2. To study the parallel connection of two-
port.

3. To study the cascade connection of two-
port.

4. To study the concept of transformed
variables.

5. To study the image parameters.

1. Be able to analyse a series
connection using z-parameters.

2. Be able to analyse a parallel
connection using y-parameters.

3. Be able to analyse a cascade
connection using ABCD-parameters.
4. Be able to find the transformed
variables.

5.Be able to find the image parameters

Filters-1

1. To study and design a prototype Low pass
filter.

2. To study and design a prototype High pass
filter.

3. To study and design a prototype Band
pass filter.

4. To study and design a prototype Band
elimination filters.

5. To know the controlling of electronics
circuits.

1. Be able to analyse a low pass filter.
2 .Be able to analyse a high pass filter.
3. Be able to analyse a Band pass
filter.

4. Be able to analyse a Band
elimination filters.

5. Be able to identify the various
applications related to filters

Fourier analysis of AC

1. The Fourier theorem, consideration of

1. Be able to find mathematical model




Circuits

symmetry,

2. To study the Exponential form of Fourier
series, line spectra and phase angle spectra,

3. To study the Fourier integrals and Fourier
transforms,

4. To study the properties of Fourier transforms
5. To study the Filter experiment.

of Fourier series.

2. Be able to find the Exponential form
of Fourier.

3. Be able to find behaviour of Fourier
series.

4. Be able to know the properties.

5. Be able to know the idea of signals and
systems.

8. Class Time Table:

9. Individual Time Table




Geethanjali college of Engineering & Technology

Department of Electrical and Electronics Engineering

Year& Semester to whom subject is Offered Il Year — Il sem

Name of the Subject Network Theory

Name of the Faculty: Dr. S. Radhika __Designation Professor

Department: Electrical and Electronics Engineering

Introduction to the Subject

This subject give the brief description the property of the circuit element
and their behavior for various excitations. It also throw a glance on the on
the Design and operation of the two port networks and different types of
filters

Objectives of the subject:

This course introduces the basis concepts of circuit analysis which is the
foundation for all subjects of the Electrical Engineering discipline. The
emphasis of this course if laid on the basic analysis of circuits which
includes three phase circuits, transient analysis for both DC and Sinusoidal
excitation

This course also introduces the concept of network functions, complex
frequency, transform impedance and transform circuits. It also gives a
brief description of Fourier analysis of AC circuits.



JNTU Syllabus with Additional Topics:

SI.N

Unit
No

Topic

Additional Topic

1

Phase sequence Star and delta connection

Relation between line and phase voltages and currents in balanced systems.

Analysis if balanced and unbalanced 3 phase circuits.

Measurement of active and reactive power

Transient response of R-L, RC, RLC Circuits

(Series and parallel combination) for DC excitation

Initial conditions-Solution method using differential equation

Initial conditions-Solution method using Laplace transforms

Transient response of R-L, RC, RLC Circuits

(Series and parallel combination) for ASinusoidal excitation

Initial conditions-Solution method using differential equation

Initial conditions-Solution method using Laplace transforms

The concept of complex frequency,

physical interpretation of complex frequency,

Transform impedance and transform circuits, series and parallel combination of
elements

Terminal pairs of ports, network functions for the one port and two port,

poles and zeros of network functions, significance of poles and zeros,

properties of driving point functions, properties of transfer functions,

necessary conditions for driving point functions necessary conditions for transfer
functions.

Time domain response from pole zero plot

Two port network parameters

Z,Y, ABCD and hybrid parameters and their relations

Cascaded networks, Concept of transformed network

Two port network parameters using transformed variables.

Low pass, High pass, Prototype filter design.

Band pass, Band Elimination, Prototype filter design.

The Fourier theorem, consideration of symmetry,

Exponential form of Fourier series, line spectra and phase angle spectra,

Fourier integrals and Fourier transforms, properties of Fourier transforms




Unit wise Summary

Sl.
No

Unit
No

Total
Period
S

Reg/
Additional

LCD/O
HP/BB

Remar

1

6

Phase sequence Star and delta connection

Relation between line and phase voltages and currents in
balanced systems.

Analysis if balanced and unbalanced 3 phase circuits.
Measurement of active and reactive power

Transient response of R-L, RC, RLC Circuits

(Series and parallel combination) for DC excitation

Initial conditions-Solution method using differential
equation

Initial conditions-Solution method using Laplace
transforms

Transient response of R-L, RC, RLC Circuits

(Series and parallel combination) for ASinusoidal
excitation

Initial conditions-Solution method using differential
equation and Laplace transforms

The concept of complex frequency, physical
interpretation Transform impedance and transform
circuits, series and parallel combination of elements

Terminal pairs of ports, network functions for the one
port and two port,

poles and zeros of network functions, significance of
poles and zeros,

properties of driving point functions, properties of
transfer functions,

necessary conditions for driving point functions necessary
conditions for transfer functions.

Time domain response from pole zero plot

Two port network parameters Z, Y,

ABCD and hybrid parameters and their relations

Cascaded networks, Concept of transformed network

Two port network parameters using transformed
variables.

Low pass, High pass, Prototype filter design.

Band pass, Band Elimination, Prototype filter design.

The Fourier theorem, consideration of symmetry,

Exponential form of Fourier series, line spectra and phase
angle spectra,

Fourier integrals and Fourier transforms, properties of
Fourier transforms




Micro plan

SNIL) ::'t Date Topic to be covered in one lecture ::gll Additi :(;3/3(; Remark

1 1 Introduction of Subject

2 1 Phase sequence Star and delta connection

3 1 Relation between line and phase voltages and
currents in balanced systems.

4 1 Analysis if balanced and unbalanced 3 phase circuits.

5 1 Measurement of active and reactive power

6 1 Numericals

7 2 Transient response of R-L, RC, For DC

8 2 Transient response of, RLC Circuits for DC

9 2 Solution method using differential equation

10 | 2 Numericals

11 |2 Numericals

12 |2 Solution method using Laplace transforms

13 |2 Solution method using Laplace transforms

14 Tutorial 1

15 Tutorial 2

16 Assignment (Unit | & 11)

17 |3 Transient response of R-L, RC, For sinusoidal

18 |3 Transient response of RLC Circuits for sinusoidal

19 |3 Solution method using differential equation

20 |3 Numericals

21 |3 Solution method using Laplace transforms

22 |3 Solution method using Laplace transforms

23 Optimization of generation Addition

24 | 4 The concept of complex frequency,

25 |4 physical interpretation of complex frequency,

2% |a Transform impedance and transform circuits, series
and parallel combination of elements

27 |a Terminal pairs of ports, network functions for the one
port and two port,

23 | a poles and zeros of network functions, significance of
poles and zeros,

29 |4 properties of driving and transfer functions,

30 |a necessary conditions for driving point functions
necessary conditions for transfer functions.

31 |4 Time domain response from pole zero plot

32 Tutorial 3

33 Tutorial 4

34 Assignment (Unit Il & IV)

35 Revision for Mid |

36 Charecteristics of fuses(Practical) Addition




SNI;) :2“ Date Topic to be covered in one lecture Eﬁg{ Additi II:I(;’[;/B(; Remark
37 |'5 Two port network parameters Z, Y
38 |5 ABCD and hybrid parameters and their relations
39 |5 Numerical
40 |5 Numerical
41 | 6 Cascaded networks, Concept of transformed network
22 |6 Two port network parameters using transformed
variables.
43 | 6 Numerical
44 | 6 Break down of Insulator Addition Video
45 Tutorial 5
46 Tutorial 6
47 Assignment (Unit V & VI)
48 Lightning on a substation Addition videos
49 |7 Low pass, Prototype filter design.
50 |7 High pass, Prototype filter design.
51 |7 Band pass, Band Elimination, Prototype filter design.
52 |7 Numericals
53 | 8 The Fourier theorem, consideration of symmetry,
54 |8 Exponential form of Fourier series, line spectra and
phase angle spectra,
55 | 8 Fourier integrals and Fourier transforms,
56 |8 properties of Fourier transforms
57 Filter experiment Addition lab
58 Tutorial 7
59 Tutorial 8
60 Assignment (Unit VII & VIII)
61 Revision for Mid |l
62 Revision of Old question papers
63 Revision of Old question papers
64 Revision of Old question papers




Detailed Lecture notes containing

1.PPTS

2.0HP slides

3.Subjective type questions (approximately 5 to 8 /unit)
4.0bjective type questions (approximately 20 to 30 /unit

5.Any simulations

Course Review (By the concerned Faculty):

(i) Aims
(i) Sample Check

(iEnd of the course report by the concerned faculty

GUIDELINES:

Distribution of periods:

No.

No.

No.

No.

No.

No.

of Classes required to cover JNTU syllabus

of Classes required to cover Additional topics

of Classes required to cover Assignment tests

of Classes required to cover tutorials

of Classes required to cover Mid tests revision

of Classes required to solve University Question papers

Total periods

143



Detailed notes:

Unit-1

Detailed Notes:

Unit-01

BALANCED THREE-PHASE
AC CIRCUIT

. Balanced Three-Phase Voltage Sources
Delta Connection
Star Connection
. Balanced 3-phase Load
Delta Connection
Star Connection
. Power in a Balanced Phase Circuit



Introduction

Three Phase System

[ ®
3-phase vc—ltage’ ° 3-phase load
source
® ®

.

3-phase transmission line



Balanced Three Phase Voltages

Three-phase voltage sources

a

0 €

O ¢
a) wye-connected source b) delta-connected source

If the voltage source have the same amplitude and
frequency ® and are out of phase with each other by
120°, the voltage are said to be balanced.

|Van :‘Vbn = ‘V

cn

vV,+V,+V, =0

Balanced phase voltages are equal in magnitude and
out of phase with each other by 120°

Balanced Three Phase Voltages

abc sequence or positive sequence:
V,, =V, £0°

V,, =V, £-120"

V, =V, £-240" =V _£+120°

acb sequence or negative sequence:

V,, =V, 20"

vV, =V, £-120
Vi, = V,£—-240° =V, £+120°

Vp is the effective or rms value



Balanced Three Phase Loads
Two possible three-phase load configurations:

a o

a) a Star or Y-connected load b) a delta-connected load
For a balanced wye connected load: For a balanced delta connected load:
Z,=Z7,=7,=7Z, 2,=7,=7.=7,

Zy =%ZA Zﬂ. - BZY

Example 1

Determine the phase sequence of the set of voltages
Vvan = N2 200 cos(wt + 10°)
ven = N2 200 cos(wt — 230°), ven =2 200 cos(wt — 110°)
Solution:
The voltages can be expressed in phasor form as
We notice that Van leads Ver by 120° and Ven in turn leads Vion by

oy V. =200£10°V V,, =200£—230°V V., =200Z—110°V

Hence, we have an ach sequence.
Given that V,, =110Z£30°V | find Van and Vcn, assuming a
positive (abc) sequence.

Answer: V., =110£150°V V., =110£-90°V

a



Balanced Y-Y Connection

A balanced Y-Y system is a three phase system with a balanced Y connected
source and balanced Y connected load.

a A

Z :

= L = Load impedance

y=Z.+Z,+Z,
Z Z:

Zy=1,
( B

= Source impedance

n

= Line impedance

~

N N N N

Z

Balanced Wye-Wye Connection

ZS — Source impedance
Z, — Line impedance
ZL = Load impedance

ZY = Total impedance per phase
2y = ¥l ¥Ly




Balanced Y-Y Connection

Line to line voltages or line voltages
given that phase a voltage is reference

Vcn
can be shown to be:

V,, =3V, £30°
V,, =3V, £-90°
V., =v/3V,2-210°

Vbn
V, =3V

Balanced Y-Y Connection

Given the phase voltages, the line current can be calculated as: .
Applying KVL to each phase: _
[a — Vﬂl‘l

Z., B

o 0

[b:Vb“ V,.£—120 _14_1200

Zy Zy L+, +I =—1,=0

vV, V, Z— 240" 0
ICZZY :Z—Y:IJA—24O VDNZZHIHZO

a I“. 4

Thus, the per-phase equivalent Van * . Zy

circuit can be expressed as:
] N V.,




Y-Y configuration Example:1

+ A balanced positive-sequence Y-connected 60 Hz three-phase source has
phase voltage Va=1000V. Each phase of the load consists of a 0.1-H
inductance in series with a 50-0Q resistance.

* Find the line currents, the line voltages, the power and the reactive power
delivered to the load. Draw a phasor diagram showing line voltages, phase
voltages and the line currents. Assuming that the phase angle of V,, is zero.

1000,/ 0° 1000,/ -120°

TOEKN /1207

r ‘I-ll'l'

] Vﬂ”
Z =R+ joL=50+ j37.7=62.62/37" I,= -
. 0=37 o0, =15972-157"] _=15.97./83"

V, =V, x3230° =1732.230" -V, =17322-90°,V_ =1732.£150"

ab an

=15.97£-37°

5-20

Example 2 R

‘ 110/0°V
1- Calculate the line

currents in the three wire 10+ 7882
Y-Y system of figure 110/-240°V 110/-120°V
5-20 z 10 +;3Q

o h

below. e/ \b
— .
10 =80
{ S5-2Q c I J
- :

2- A Y-connected balanced three-phase generator with an impedance of
0.4+j0.3 Q per phase is connected to a Y-connected balanced load with
an impedance of 24 + j19 Q per phase. The line joining the generator
and the load has an impedance of 0.6 + j0O.7 Q per phase.

Assuming a positive sequence for the source voltages and that

V. =320 #3230V

an

Find: (a) the line voltages (b) the line currents



Balanced Y-Delta Connection

A balanced Y- A system consisis of balanced Y connected source feeding a

balanced A connected load. L
Line voltages: T —
Vo
v = ®
Vﬂb - ﬁVPZSO - VAB \IZ\ 1_4.5// \I
V. =43V.£-90° = V. @ @ / -
P Iy Zy \

. & —_— 8 ¢

V., =3V,£-210° =V, | P
Phase currents: I, = h I = h I, = h I
Z, Z, Z,

Line currents:

1, =1,y ~1c, =31 ,,£-30°
1, =1, —1,, =+/31,2-150°
I.=1, —1,.=-31,,290°

Bgloqnced Y-Delta Connanrtinn

Iea =1L~
I=1,,—TI. =1,,(01-1£-240")
I, =1,,+/32-30°

Magnitude line currents: I = Ipﬁ

I, = L =‘IAB| =|IBC‘ =‘ICA|Ib

Ia

=|1b| —

IC

A single phase equivalent circuit

Zz
L Y

—

Z
‘;J‘J * . Ti I — V“" — Vtrn
“Z, Z,/3




Y-Delta configuration: Example 3

1- A balanced abc sequence Y-connected source with V, =100£10"V

is connected to a A-connected balanced load (8+j4)Q per phase.
Calculate the phase and line currents.

2-One line voltage of a balanced Y-connected source is V,, =180£-20°V

If the source is connected to a A -connected load of 20.,40°Q. find
the phase and line currents.

Assume the abc sequence.

Balanced Delta-Delia
Connection

A balanced A - A system is one in which both balanced
source and balanced load are A connected.




Balanced Delta-Delta Connection

A balanced A - A system is the one in which both balanced source and balanced

load are A connected. I,
Line voltages: - —
Vo =Van ]
‘;n ‘db
Vie = Ve I,
vca = VCA ‘ ' b =
Vi I
Line currents: =
Li=lig=Ty= \/SIABA-—3O° Phase currents:
I Sk T S3J31.4-150° =
1 = AB
I =1, —1, =+31,290° =g,
Magnitude line currents: Total impedance: I, = Ve
ZA
I, =143 7 o
Z. =4 = Yica
Y ICA
3 Z

Example4:

A delta-connected source
supplies a delta-connected
load through wires having
impedances of Z,,.=0.3+j0.4Q,
the load impedance are
Z,=30+j6 Q, the balanced
source ab voltage is
Vab=1000<30

Find the line current, the line
volatge at the load, the current
in each phase of the load, the
power delivered to the load,
and dissipated in the line.

AT

b Wye-ennnected equivalent cirenit



1- A balanced A connected load having an impedance of 20-j15 Q
is connected to a A connected, positive sequence generator having

V,, =330£0°V

Calculate the phase currents of the load and the line currents.

2- A positive-sequence, balanced -connected source supplies a
balanced A-connected load. If the impedance per phase of the
load is 18+j12 Q and 1,=225/35°A > findI,, and V.

Balanced Delta-Y Connection

Replace A connected source to equivalent Y connected source.

o o

\Y
V,, =—% Z£—-150°

L Zy Zy
-]
£
&
lC
A single phase equivalent circuit Phase voltages:
v
vV, =—F4~~2-30"
I, Y
Vv
V, /—=30° —_r 30"
£ 3 . Ly 7 v, J3 ﬁ
A e N3 v
Zy Zy V., =2 2 +90°

cn_vlfg




Y-Delta configuration: Example 5

1-A balanced Y connected load with a phase resistance of 40 Q

and a reactance of 25 Q is supplies by a balanced, positive
sequence A connected source with a line voltage of 210 V.
Calculate the phase currents. Use V, as reference.

2-In a balanced -Y circuit, V, =240/1 5%
and Z, = (12 + j15) Q. Calculate the line currents.

POWER IN A BALANCED SYSTEM

For Y connected load, the phase voltage:
Vi = «/EVP CosS @i, Vp = «/EVF cos(ar —120"), Vey = «/EVP cos(ax +120%)
If Z, =778 Phase current lag phase voltage by 6.
i, = \/EIP cos( ot — 0)
Ehe phoss. ek i, = \/EIP cos(wt—0—120")
i, =+/2I cos(®t—0+120°)



POWER IN A BALANCED SYSTEM

Total instantaneous power:

p = pu * ph * pc = V.-\Niu £ VBNih + vCNic

p=3V,I cos 6

Average power per phase: Reactive power per phase:
P,=V_1I cos© Q,=V,[sinb
Apparent power per phase: Complex power per phase:

SP :VPIP SP =l:'p+jQp :VpI;

POWER IN A BALANCED SYSTEM

Total average power:
P =3P =3V I cos ©=+/3V, I cos 0
Total reactive power:

Q =3Q, =3V,I sin 8 =+/3V I, sin 0

Total complex power:

S=3S =3V I =3I'Z = .
P PP P P

S=P+jQ =~/3V, 1,286



Power: Example 6

1-A three-phase motor can be regarded as a balanced Y-load. A

three-phase motor draws 5.6 kW when the line voltage is 220 V
and the line current is 18.2 A. Determine the power factor of the
motor.

2- Calculate the line current required for a 30-kW three-phase
motor having a power factor of 0.85 lagging if it is connected to a
balanced source with a line voltage of 440 V.



UNIT-02

DC AND AC TRANSIENT ANALYSIS

Introduction

When a d.c. voltage 1s applied to a capacitor C and resis-
tor K connected in series, there is a short period of time
immediately after the voltage is connected, during which
the current flowing i the circuit and voltages across C
and R are changing.

Similarly, when a d.c. voltage is connected to a circuit
having inductance L connected n series with resistance
R, thete s a short period of time immediately after the
voltage 1s connected, during which the current flowing in
the circuit and the voltages across L and K are changing.

These changing values are called transients.

Charging a capacitor

(a) The circuit diagram for a series connected C-R circuit
is shown in Figure 17.1. When switch § is closed then
by Kirchhoff's voltage law:

V=ur+up
G R

——

—
Vo

i

—

—
V

(b) T'he battery voltage V 1s constant. 1 capacitor voii-
age vc 1s given by g/C, where ¢ is the charge on the
capacitor. The voltage drop across R is given by iR,
where 1 1s the current flowing in the circuit. Hence at
all times:

V=%+m

At the instant of closing S, (initial circuit condition),
assuming there 1s no initial charge on the capacitor,
go 1s zero, hence g, 1s zero. Thus from equation
(17.1), V=0+vpg. 1e. vy = V. This shows that the
resistance to current 1s solely due to R, and the initial
current flowing, 1,=I=V/R.

(c) A short time later at time 1} seconds after closing S,
the capacitor s partly charged to, say, g| coulombs
because current has been flowing. The voltage ve) is
now ¢/ volts. If the current flowing 1s i) amperes,
then the voltage drop across K has fallen to i} R volts.
Thus, equation (17.2) 1s now V= (g, /C) + 1, K.

(d) A short time later still, say at time # seconds after
closing the switch, the charge has increased to ¢
coulombs and ve has increased to gz/C volts. Since
V=v¢ +vgand V 15 a constant, then vp decreases to
(K. Thus ve 1s increasing and  and vg are decreasing
as time increases.

(e) Ultimately, a few seconds after closing S, (ie. at
the final or steady state condition), the capacitor is
fully charged to, say, ( coulombs, current no longer
flows, 1.e. 1=0, and hence vp=1R=0. It follows
from equation (17.1) that v =V,



(f) Curves showing the changesin v, ug and i with time
are shown in Figure [7.2.
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The curve showing the vanation of vy with time is
called an exponential growth curve and the graph is
called the ‘capacitor voltage/time* charactenstic. The
curves showing the variation of vg and ¢ with time
are called exponential decay curves, and the graphs
are called ‘resistor voltage/time” and *cument/time”
characteristics respectively. i The name ‘exponential

time ] seconds. Let the voliage be varied so that the
current flowing in the circuit is constant.
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(c) Since the cumrent flowing is a constant, the curve will
follow a tangent. AB, drawn to the curve at paint A.

(d) Let the capacitor voltage v reach its final value of ¥
at time £ seconds.

(e} The time comesponding to (; - 1)) seconds is called
the time constant of the ciuit, denoted by the Greek
letter ‘tau’, 7. The value of the time constant is CR
seconds, Le. for a series connected C-R circuit,

time constant T = CR seconds

Since the variable voltage mentioned in para (b )above
can be applied to any instant during the transient
change, it may be applied atr=1, iz. at the instant
of connecting the circuit to the supply. If this is done,
then the time constant of the circuit may be defined as:

‘the time taken for a transient fo reach s final siate
if the initial rate of change is mainained .

Transient curves for a C-R circuit

Ther: are two main methods of drawing transient curves
graphically, these being;



A circult consists of a resistor ¢ onnec ted
in=erieswith a5 pFoapacitor and ha= atime constant
of 1 2 ms. Determines (a) the value ofthe resistor, and (b))
the capacitor voltage 7 ms after connecting the circuit
to a 10% supply.

(a)l The time constant T = TR, henoe B = %
. 12 % 103
. R = = 24 = 107 = 24 kD
e 0.5 = 105 =

by The equaton for the growesth of capacitor volmome is:
pe = Vil — e
Since T—= 12ms =12 3 1077 s, V= 10W% and

r=7Tms=7T > 10— s5_

— T orli—3
then v = lD[l — = |1==1'3'_':| = 1] — «—"2-F83,
= 1i& ]l — 0. 555871 — 4 4F W
Adternatively, the valoe of v when r i 7 ms may be

determined using the growith characteristic as shoeen
in Problem 1.



& circuit con=zists of a 10 pF capacitor
connected in scries with a 25 k2 pesistor with a seritch-
able 100% d.c. supply. When the supply is connected.
calculate (a) the time constant, (b} the maximum cur-
mrent. (o) the voltage across the capacitor after 0.5 =,
(d) the current Aowing after one time constant, (e) the
voltage across the mesistor after 0.1 =, (f) the tme for
the capacitor voltage to reach 45%, and (g} the inital
rate of voltage rise.

(a) Tinwe constant, T = 2 &= 103 107 2 25 = 103
=25 =

(h) Cument is a maximum when the circuait i= first con-

nected and 12 only hmited by the valous of resistancs
in the circuit, i.e.

Vv 100
- I 25 2 107

=

(c) Capacitor voltage, v = Vi, (1l — =0
When time, f = ':l.uﬁz.s_ then
e = 1] — ™ T2F = 1l 558371 = 8647 W

N . —t
(Al Cument, f = fme ™

andwhenrs = 1. current. § = 4™ 7 =4 = 1. 4T2 mA

Alernatively, after one time constant the capacitor

voltage will have risen to 63,29 of the supply voltage

and the cuoment will have fallen to &@3.2%% of its final

value ., ie. 36.89% of I,
Hence, i=36.8% of 4 =0L368 = 4 = 1.47X miA

(e) The voltage across the resistor, vy = Ve~ =
Fhen s =101 =, resistoer voltase,
v = 100e™ 555 — G703V

(fy Capacitor voltage, v = Vi, (1l —e™ ¥



When th:_ capacitor wvoltape reaches 4353V, then:
45=100 (1 — e~ = )

from which,

45 . _ ¢ 45
Hence,
¥

= In0L55  and time, s = —0.25 In 0.55
=k 14% =

Initial rate of voltage ri;e-:i Lo
T 0.25

e, gradient of the tangent at r =0)

0.
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mrorverth of resistor voltagee., op =— Vil — = 800

= Wil — =Ty
grroewith of cwmrre et floss, Fo= 1l — g RS,
= Il — ey
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(d) A smooth curve is drawn through points O, I, F and
H and this curve is the current'time characteristc.

From the charactensic, when r = 27, i= L6 A,

[This may be checked bycalculaton using i = Il — e,
where [ =3 and r=2r, giving { = 2.59A].

Also, when the cumrent is 1.5 A, the cormesponding time is
about 3.6 ms.

[This may be checked by calculation, using i = (1 — eI
wher i = 1.5, I=3 and r= Sms. giving r = 3.466 ms. |

A el e darecduace bEmnec e OO0 L ancad e =i se—
sawsee LI S22 a= comreectesd e s L 20 % A el suapep s e e r—
e Cal thhe fAnal waloe oo curssme., (b thee e o=t
e thees cirncwmie, Lo 3 thee waluees oo currment sfter s il reeses o o unel
o thee tirmees comn=tmnt frooom thee in=stant thee =up pEl vl oo o

A= oo reabead, o3 thie o o] e For thee cwurrrs ot e
ri=— tox »=withim 19SS of de= =1 R BT
= 1=
L Fimal seeacds cwuarrasnt. =E=ﬁ=]2 N
L = Tairres caarms=bant oof chie -:'ir\-:'uil:_z'=£= 0 e
i~ A
= HF_dMFd = awr < sun=
Lo I che cdrmae = = the Ccurrmnmt rscs tox 3 25 ofF db=s
Arn=l waloases ofF L2 S does. i < = the curmrs nt riscs o
M SR o 12 "TF.51= N0
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) Froobhlooam Lo The wwimcdim e of am oclecormorm a et bas= =

Adrdwumctarcse «F F H @=rsed a resistanece ofF 1S5 22 WSl m i i=
cammmeecbed tee o |m L 20 7% . doc. supplyr. caloculane:
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FJF— 12015 — = .5
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)y WWhean the curment i= 259 of its final valous f = 0. S 57

Ayl o F Fil — === thus LSS — f{l — =277y

B ES = 1 — 7 and since T = .2,
I ES = ] — =22
TR )  DBS =015
. L
Sz _
= T 6.8
Taking natural logarithms of esch =ide of this eguation
Eiveas
In &2 — I &.é and By the laws of logmanthims
x -
o= e = Iln &.&a. But ln e —= 1.  honos
=002 In&. a4 j.c. r — AT =<
=) The currsnt at any instantis given by § = 0l — =57
When f — S.r — 0.2 and v = .2, then
= Bl — & W2y Bl — 5
= B{l — 2231 = 5 == LTI ED
i f — G215 4



UNIT-03

TWO-PORT CIRCUITS

INTODUCTION

* A pair of terminals through which a current may
enter or leave a network is known as a port.

- Two-terminal devices or elements (such as resistors,
capacitors, and inductors) result in one-port
networks.

* Most of the circuits we have dealt with so far are

two-terminal or one-port circuits, represented in the
following figure 1(a):

Linear
network

01 4 +
- IH

INTRODUCTION

* The four-terminal or fwo-port circuits are involving
op amps, transistors, and transformers, as shown in
the following figure 1(b):

Lmear
network

®)
A port is an access to the network and consists of a
pair of terminals.

+  The current entering one terminal leaves through the

other terminal so that the net current entering the
port equals zero.



INTRODUCTION

A two-port network is an electrical network with two separate
ports for input and output.

A two-port network has two terminal pairs acting as access
points.

Such networks are useful in communications, control systems,
power systems, and electronics. For example, they are used in
electronics to model transistors and to apply the analysis of
transistor circuits.

The current entering one terminal of a pair leaves the other
terminal in the pair.

To characterize a two-port network requires that we relate
the terminal quantities V1, V2, I1, and I2 in Fig. 1(b).

o— f——0

- -

Linear
network

Vi
o—xo I
-— =
I I
(b)

The various terms that relate these voltages and currents are
called parameters.

Our goal is to derive six sets of these parameters.

We will show the relationship between these parameters and how
two-port networks can be connected in series, parallel, or cascade.



IMPEDANCE PARAMETERS

Impedance and admittance parameters are commonly used in the
synthesis of filters.

A two-port network may be voltage-driven as in Fig. 2(a) or current-
driven as in Fig. 2(b).
1

1 I
— -
v Linear R
1 network V2 L
(@)

Linear
network

(®)
The terminal voltages can be related to the terminal currents as:

Vi =zuh +zpph
Vo =z I) + 2225

or in matrix form as

[¥ == ==|[2]=mlg]

the Z terms are called the z parameters, and have units of ohms.

The values of the parameters can be evaluated by settingI1 =0
or I2 =0 .Thus,

Vi Vi
Zyy = — . Z12 =
I |- L2 |y, -0
Vs V3
Z) = . Z3; =
I 1,=0 I 1,=0

Since the Z parameters are obtained by open-circuiting the input or output
port, they are also called the open-circuit impedance parameters.

Z11 = Open-circuit input impedance
Z12 = Open-circuit transfer impedance from port 1 o port 2
Z21 = Open-circuit transfer impedance from port 2 to port 1
Z22 = Open-circuit output impedance



]

We obtain Zi1 and Za1 by connecting a voltage Vi (or a current

source I1) to port 1 with port 2 open-circuited as in Fig.3(a) and
finding T: and V2

Similarly, we obtain Z12 and z22 by connecting a voltage Vz (or a current

source 12) to port 2 with port 1 open-circuited as in Fig. 3(b) and finding
Iz and Vi

I, L=0
—
—_—
i +
nm= i
Y : Vi
2
Zyy = —
21 I, _
—O
@)
I,=0 I,
—_— -
- \'1
Z1p = I
‘.1 i A5
“\ -
Zyp=—
B .
o— 1

71

Sometimes Z11 and Z2z are called driving-point impedances, while
Z21 and Z12 are called transfer impedances.

When z11 = Z22, the two-port network is said to be symmetrical.

When the two-port network has no dependent sources, the transfer impedances

are equal (Z12 = Z21), and the two-port is said to be reciprocal.

A two-port is reciprocal if interchanging an ideal voltage source at one

port with an ideal ammeter at the other port gives the same ammeter

reading.

The reciprocal network yields V = z12I when connected as in Fig. 4(a),

but yields V = z21I when connected as in Fia. 4(b).
1

b

b1
Reciprocal
two-port

(@)

if
Reciprocal
two-port

(b)



=N

For a reciprocal network, the T-equivalent circuit in Fig.5(a)
can be used.

If the network is not reciprocal, a more general equivalent
network is shown in Fig. 5(b)

) .
Vi Va
P o
(a) (b)
Example. 1

Determine the Zparameters for the circuit in the following

f'gure: 20Q 30Q

40Q

(2

200 30Q ‘!2_

ll =0
—
o—
4
v ;on Y
~ l c ’
®)




Solution:

To determine z;; and z;}, we apply a voltage source V;
to the input port and leave the output port open as 1n Fig. (a). Then,

Vi (20+40)L

m=—=———z=00
I I
that 1s, z1) 1s the input impedance at port 1.
eV W
T 51

To find z); and z. we apply a voltage source V), to the output port and

leave the input port open as in Fig (b). Then, =l L
Vi 405 o - A . (30 + 40)I, -
ZIQ_E-T-MQ' 123-11— T =708
Thus,
B 600 40Q
400 709
Method 2

Alternatively, since there 15 no dependent source in the
given circuit, zjy = 21 and we can use Fig. 5(a). Comparing with Fig.
5(a), we get

m=40Q=2zy

m-n=20 = m=20+zp=609Q

m-m=30 = 1p=30+mp=70Q




Example 2

* Find I1 and Iz in the circuit of the following figure:

m= 40Q
Z;) =}20 Q
23 =j30Q
In= 50Q

Example 2 Find I1 and I2 in the circuit in the following figure.

Solution:

we can use Eq. (1) directly. Substituting the given 2
parameters into Eq. (1),

Vi =401 + j20I
V3 = j30I; + 501

since we are looking for I; and I, we substitute

Vi =100/0°, Vy=-10I
mto the above Eqs., which become 10047V

100 = 40I; + j20I
—10L, = j30L +50, = L =j2L,

Substituting we get
100 = j8OL + j20l, = L=

I; = j2(—j) =2. Thus,

L=2/00A, L=1/-90CA

=400
73 =j20 10
2y =j30 02
=500

10Q




ADMITTANCE PARAMETERS

*  Impedance parameters may not exist for a two-port network. So there
is a need for an alternative means of describing such a network. This
need is met by the second set of parameters,

In either Fig. 6(a) or (b), the terminal currents can be expressed in
terms of the terminal voltages:

* They terms are known as the adimittance parameters
* (or, simply, y parameters)

and have units of siemens.

L =ynVi+ynV2
L =yaVi+ynaW2

or in matrix form as

! m ||V [V
(=[]

I
vil = —
Yl =
I,
Y=o

Vi

V2 0. ) Vi lvi-

V= —

Va=0 T Valy

* Y11 = Short-circuit input admittance A

* Y12 = Short-circuit transfer admittc
from port 2 to port 1

* Ya1 = Short-circuit transfer admittc
from port 1 to port 2

* Ya2 = Short-circuit output admittanc. e

* We obtain y1: and ya1 by connecting a current I1 to port 1 and
short-circuiting port 2 as in Fig. 6(a), finding V1 and I2



When a two-port network has no dependent sources, the transfer
admittances are equal (y12 = ya1).

* A reciprocal network (y12 = y21) can be modeled by the -equivalent
circuit in Fig. 7(a).

If the network is not reciprocal, a more general equivalent network is
shown in Fig. 7(b).

L L
R s
o [
+ +
Vi W Y A
LIPAP) Yo\,
= _
(@)

(®)

o
+ 0

-t
-
>

o
Q|
o]

Example .3

* Obtain the y parameters for the network
shown in the following figure:

P ®



Solution:
methodl

To find yy; and y5;. short-circuit the output port and con-
nect a current source I; to the mput port as in Fig.(a) Since the
8- resistor 1s short-circuited, the 2-Q resistor 15 1n parallel with the 4-Q
resistor. Hence,

Vich@[)=an wm=l=X_o1s5s
1=h@#12)=3h, .n—‘.l—éll—-
By current division,
) _21 (a)
-I2='L'Il="ll- \31:-1_—2-=-—42=-0.55
442 3 i i
Con.
* Method 1

To get 12 and y2;. short-circuit the input port and connect a current source
I, to the output port as in Fig. (b). The 4-Q resistor 1s short-circuited
so that the 2-Q and 8-{Q2 resistors are i parallel.

Y 8 5
V=18 | 2) = =y, yn=—=+—=-=0625S
5 8
By current division,

8
842

4
I = h=zch Yu=o-=

®)



Method 2

* Alfernatively, comparing the original figure with Fig. (a),

1 20
\12=—_2.S=\21 o_rw~\_|_o
i ' 210 Zsq
mEm=7 = m=o-—yp=0458
yn 4y : — ¥ ! ¥ 0.625S
2 P = - 'Y = — — VY12 = 0.02
2Ty 3 yn 3 ynR

. As obtained previously

s

V=0 240

(®)

HYBRID PARAMETERS

* This third set of parameters is based on making V1 and Iz the
dependent variables.

Vi =hnl + hnV2
I> = hoili + haaVa

or 1n matrix form,
Vil _(bn bf|L|_ I
ISRE
- The h terms are known as the hybrid parameters (or, h parameters)
* The ideal transformer can be described by the hybrid parameters.



The values of the parameters are determined as

b Vi b Vi
1n=—_— ' n=

I lva=0 Valp-0

I I
== ; -

I lv,-0 Va0

h11 = Short-circuit input impedance

hiz = Open-circuit reverse voltage gain
ha1 = Short-circuit forward current gain
hzz = Open-circuit output admittance

This is why they are called the hybrid parameters.

h parameters

The procedure for calculating the A parameters is similar to that used
for the zor y parameters.

For reciprocal networks, hiz = -hai. This can be proved in the same way
as we proved that z12 = za1.

The following figure shows the hybrid model of a two-port network:




A set of parameters closely related to the A parameters
are the g parameters or inverse hybrid parameters

These are used to describe the terminal currents and voltages as:

ILL=gnVi+gph
Vo=gnVi+gnh

)-8 ][h]-m[y]

The values of the g parameters are determined as:

_ I I

gn = c e gn= 1_3 -
¥ e

B % L-0 SH V=0

gu = Open-circuit input admittance

g1z = Short-circuit reverse current gain
gz1 = Open-circuit forward voltage gain
gzz = Short-circuit output impedance

The following figure shows the inverse hybrid model of a two-
port network

Vi 2 gl

1




Example 5

* Find the hybrid parameters for the two-port network of the
following figure:

2Q 3iQ

Example 5 Find the hybrid parameters for the two-port network
of the following figure:

To find hy; and hy), we short-circut the output port and connect a current
source I to the input port as shown 1 Fig. (a) . From Fig.(a).

Vi=Lh2+3]6) =4

Hence,
v
hn = —l =4 Q
I
Also. from Fig.(a) we obtain, by current division,
6
~h=—=-1
AT L

Hence,




Example 5 con.

To obtain h) and hy;, we open-circuit the mput port and connect a voltage
source V'3 to the output port as in Fig. (b). By voltage division,

3Q

6Q

6 2
Vi=—WVWV1=-V\
6+3 3
Hence,
L .
12—‘—.2—; [
Also,
Va=(3+6L =9
Thus,
h1_=l72=-1-5
Va 9

TRANSMISSION PARAMETERS

The impedance and admittance parameters are grouped into the /mmittance

" Y
12 12
/y

ap 12

parameters
The term immittance denotes a quantity that is either an impedance or an
admittance .
The a parameters describe the voltage Vi
and current at one end of the two-port a = "‘;z' -

network in term of the voltage and current

at the other end ,therefore they called the

transmission parameters _ 4 S
Q11 = Open-circuit voltage ratio - V10

@1z =Negative short-circuit transfer impedance
G2z =Open circuit transfer admittance

Q21 =Negative short-circuit current ratio




b parameters

The parameters b are called
the /nverse transmission parameters

Vs V;
by == bp=-23 0
" Vi [5=0 > I |y,=0

I |
bn=7i 8 by =~

114,=0 11V,=0

bi1 = Open-circuit voltage gain

* b1z =Negative short-circuit transfer impedance
bzz =Open circuit transfer admittance

* bai =Negative short-circuit current gain

RELATIONSHIPS BETWEEN PARAMETERS

+ Since the six sets of parameters relate the same input and output
terminal variables of the same two-port network, they should be
interrelated.

If two sets of parameters exist, we can relate one set to the other set.
* Given the zparameters, let us obtain the y parameters.

Y z | |1 I
) -[ 22][e] -]
HELEM
Also. we know that :

I m ye||V Y
HEEESEEEN

Comparing Eqs we see that

or



The adjoint of the [z] matnx 1s
zn -z
-z21 211

: = 211222 — Z21222)

and 1ts determinant 1s

Substituting these mto Eq. [y] = [z] ' ~we get

2 -Z12
—221 £A81
— A

<

v 2

¥ii. ¥
Y21 ¥y

Equating terms yields

zn zn . z31

¥ = Y2 = =y

A, B

"

N
—
—

-
3
Il

[

"

As a second example. let us determine the s parameters from the z

parameters. we know that-
Vi =znh +zph
Vo =zl + znh

Making I the subject of second Eq..

Substituting this into first gq. -

Z11Z22 — Z12221 5+ Z12 Vo

z»n zn

Putting Eqs in matrix form,

Vi=

[
‘
N
w

—
[
b (¥
—
N
[
-
| N
-
>
A -
N~
| W |

N
9
>
o
13



)

For & parameters, i
Vi|_|bn bp||L
L | | hn||V2

Comparing this with the last Eq.. we obtain
F )] 1

hy = —, hp = —, hy = —, hy = —
zn zn zn zn

It can also be shown that

[g] = [n]

Table 18.1 provides the conversion formulas for the six sets of
two-port parameters. Given one set of parameters.

TABLE 18] Converzion of two-port parameters.

z y b [ 3 T t
: oz m 2 .M & B 1 s A A 4 I
" ! A, A, by b =, g c c € 3
. ¥u ¥ii by, 1 & A, 1 D A, a
B a, A &% % o wm € € © ¢
s z 1 b, A s D A a 1
¥ o S § i v i i e B = = = e
A, A by by f-553 [+ B B b b
2 zy & @ b As g 1 1 A A, d
A, A " e B, b, 2 = B B ) b
A, z 1 i | =} g B Ay b 1
S~ e . T e < S
z 1 ¥ A, [ <1 20 1 < A, <
= — b7 — Lo b Py — - — — -
n n ¥ ¥ A, A, D D a a
1 z: A, Y b b c Ay < 1
‘ Ty e Ty == A s AT ‘II :\ >~ D - any Y
t T 2y Yo b ;-] As As A A d d
2 A, viy 1 ™ b N 1 B A, b
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2 A, ¥ 1 1 by, A, 135 D =
t — - — — Lo - — S — —-— a b
z z Y Yu b b 2n g2 Ar Ar
Tod A e M A g 1 € A L,
20 22 ¥ Y2 B B [35 g Ar Ar
A, =2p2n — T2y, Ay =hhy — bk, A; =AD -BC
A, =yu¥n—Yu¥an: A, =8z —8Suln. A =ad-be




I, I,
L V_l \'3=o' e ‘_’2 Vi=0
Ya = I—Z . Y= B
Vilyv,—o Valy,=o
gn = "I—ll‘ , gn = -:—1 )
h=0 = 1IVi=0
_ Va _ Va
g1 = v ]:=o‘ %) = L A




Attenuators

Under certain situations, we may actually want to reduce signal
powerl

Thus, we need an inverse amplifier—an attenuator.

P <P

o

P

An ideal attenuator has a scattering matrix of the form:
§ 0 «
la O

Thus, an attenuator is matched and reciprocal, but it is
certainly not lossless.

where || <1.

The attenuation of an attenuator is defined as:

Attenuation = - 10log,, |/’

Typical values of fixed attenuators (sometimes called "pads”)
are 3 dB, 6 dB, 10 dB, 20 dB and 30 dB.



For example, a 6 dB pad will attenuate as signal by 6 dB—the
output power will be one forth of the input power.

One application of fixed attenuators is to improve return loss.

For example, consider the case where the return loss of a
mismatched load is 13 dB:

r,=0

Say we now add a 6 dB pad between the source and the load—
we find that the return loss has improved to 25 dBI

6 dB

P,
é—
P =F,.[320

r,=0

The reason that the return loss improves by 12 dB (as opposed
to 6 dB) is that reflected power is attenuated twice—once as it
travels toward the load, and again after it is reflected from it.



Note from the standpoint of the source, the load is much
better matched. As aresult, the effect of pulling is reduced.

However, there is a definite downside to "matching” with a
fixed attenuator—the power delivered to the load is also

reduced by 6 dB |

Q: Why do you ke;;\
referring to these devices
as fixed attenuators? Do
you really think we would use

a broken one?
A—-"'k -/

A: Inaddition to fixed attenuators,
engineers of ten used variable
attenuators in radio system designs. A
variable attenuator is a device whose
attenuation can be adjusted (i.e., varied).

There are two types of (electronically) adjustable attenuators:
digital and voltage controlled.

Digital Attenuators

As the name implies, digital attenuators are controlled with a
set of digital (i.e., binary) control lines. As a result, the
attenuator can be set to a specific number of discrete values.

For example, a 6-bit attenuator can be set to one of 2° = 64
different attenuation valuesl



Digital attenuators are typically made from switches and fixed
attenuators, arranged in the following form:

= =M= - =M= = =M~
|7 A 7 A 7 1
caL trol control c.:rlv tral
bit 2 Bit1 bitQ

Theoretically, we can construct a digital attenuator with as
many sections as we wish. However, because of switch insertion
loss, digital attenuators typically use no more than 8 to 10 bits
(i.e., 8 to 10 sections).

It is apparent from the schematic above that each section
allows us to switch in its attenuator into the signal path
(maximum attenuation):




Or we can bypass the attenuators, thus providing no attenuation
(except for switch insertion lossl):

HorH ] [ ] [
N VAR Y1 ™\ 4

SRR

0

Or we can select some attenuators and bypass others, thus
setting the attenuation to be somewhere in between max and

minl

Mo ] R [
N 4 Y ’d

\—17 | ‘—17

0 1 0

For most digital attenuators, the attenuation of each section
has a different value, and almost always are selected such that
the values in dB are binary.

For example, consider a 6-bit digital attenuator. A typical
design might use these attenuator values:

bit 5 bit 4 bit 3 bit 2 bit 1 bit O
|attenuator |32dB [l6dB |8 dB 4 dB 2 dB 1dB




We note therefore, that by selecting the proper switches, we
can select any attenuation between O dB and 63 dB, in steps of
1dB.

For example, the 6-bit binary word 101101 would result in
attenuation of:
32+8+4+1=45d8B

Note also that 101101 is the binary representation of the
decimal number 45—the binary control word equals the
attenuation in dBll

Voltage Controlled Attenuators

Another adjustable attenuator is the voltage-controlled
attenuator. This device uses a single control line, with the
voltage at that control determining the attenuation of the
device (an “analog” attenuatorl):

Attenuation =f (V)

VW 3

Ve

Typical voltage control attenuators can provide attenuation
from a minimum of a few dB to a maximum of as much as 50 dB.



Unlike the digital attenuator, this attenuation range is a
continuous function of V¢, so that any and every attenuation
between the minimum and maximum values can be selected.

Voltage controlled attenuators are typically smaller, simpler,
and cheaper than their digital counterparts.

Q: So why did you ws'f';\

our time with digital
attenuators? It sounds
like voltage controlled
attenuators are always

the way to go!
y 1o go _/

A: We have yet to discuss the
bad stuff about voltage controlled
attenuatorsl

* Voltage controlled attenuators are generally speaking poorly
matched, with a return loss that varies with the control voltage
Ve.

* Likewise, the phase delay, bandwidth, and just about every
other device parameter also changes with V¢l

* Moreover, voltage controlled attenuators are notoriously
sensitive to temperature, power supply variations, and load
impedance.



Digital attenuators, on the other hand, generally exhibit none of
the problemsl

In addition, digital attenuators are ready made for integration
with digital controllers or processors (i.e., computers).

However, digital attenuators do have a downside—they can be
large and expensive.



UNIT-04

Network Functions for Simple Circuits
Introduction

Each of the circuits in this problem set is represented by a network function. Network functions
are defined, in the frequency-domain, to be quotient obtained by dividing the phasor
corresponding to the circuit output by the phasor corresponding to the circuit input. We calculate
the network function of a circuit by representing and analyzing the circuit in the frequency-
domain.

Network functions are described in Section 13.3 of Introduction to Electric Circuits by R.C.

Dorf and J.A Svoboda. Also, Table 10.7-1 summarizes the correspondence between the time-
domain and the frequency domain.

Worked Examples

Example 1:

Consider the circuit shown in Figure 1. The input to the circuit is the voltage of the voltage
source, v{t). The output is the voltage across the 8 € resistor, v (¢). The network function that
represents this circuit is

_Vo(o) 066

_vi(‘”) o

H(w)

|+j2
30

Determine the value of the inductance, L.

Flgure 1 The circuit considered in Example 1.

Solution: The circuit has been represented twice, by a circuit diagram and also by a network
function. The unknown inductance, L. appears in the circuit diagram, but not in the given
network function. We can analyze the circuit to determine its network function. This second
network function will depend on the unknown inductance. We will determine the value of the
inductance by equating the two network functions.



A network function is the ratio of the output phasor to the input phasor. Phasors exist in
the frequency domain. Consequently, our first step is to represent the circuit in the frequency

domain, using phasors and impedances. Figure 2 shows the frequency domain representation of
the circuit from Figure 1.

N\ o
4Q -
Vi) Volo)

Figure 2 The circuit from Figure 1. represented in the frequency domain, using impedances and
phasors.

The impedances of the inductor and the two resistors are connected in series in Figure 2. Vi(m) is

the voltage across these three series impedances and Vo) is the voltage across one of the
impedances. Apply the voltage division principle to get

8

vV —
o(@) 4+8+joL

Vi(w)
Divide both sides of this equation by Vi(w) to obtain the network function of the circuit

_Vo(w) 8
= Ly Vilw) 12+ joL

The network functions given in Equations | and 2 must be equal. That is

§ 066
2+ jwl ,, .0
I+130
8(|+jﬂ)—066(12+ij)
30,

8+j83—(:=8+j(0.66)mL

8
35=(066)L
X
o 30(0.66)
L=04 H



We can simply the algebra required to find L by putting the network function in Equation 2 into
the same form as the network function in Equation | before equating the two network functions.
Notice that the real part of the denominator of the network function is | in Equation 1. Let’s
make the real part of the denominator be | in the network function given by Equation 2. Divide
the numerator and denominator by 12 to get

]
_1-’_[4&:]_ 12 066
H(wl_vi{ﬁ’]_—|2+jm£'_l+ H— o
12 12

Equating the network functions given by Equations | and 3 gives:

_':L'&6 :—':Lﬁﬁ = i:L = [L=04 H
1+jm£ I+j£ 1230
12 30

The same result is obtained with less algebra.

Example 2:

Consider the circuit shown in Figure 3. The input to the circuit is the voltage of the voltage
source, vit). The output is the voltage across the 4 0 resistor, vo(#). This circuit is an example of
a “first order low-pass filter”. The network function that represents a first order low-pass filter
has the form

H(a)= — 4
1+ j—

Fil
This network function depends on two parameters, & and p. The parameter & is called the “dc
gain” of the first order low-pass filter and p is the pole of the first order low-pass filter.
Determine the values of & and of p for the first order low-pass filter in Figure 3.

Figure 3 The circuit considered in Example 2.



Solution: We will analyze the circuit to determine its network function and then put the network
function into the form given in Equation 4. A network function is the ratio of the output phasor
to the input phasor. Phasors exist in the frequency domain. Consequently, our first step is to
represent the circuit in the frequency domain, using phasors and impedances. Figure 4 shows the
frequency domain representation of the circuit from Figure 3.

Figure 4 The circuit from Figure 3. represented in the frequency domain, using impedances and
phasors.

The impedances of the inductor and the two resistors are connected in series in Figure 4. Vi(w) is
the voltage across these three series impedances and V() is the voltage across one of the
impedances. Apply the voltage division principle to get

4

Velo) =5 0.

Vilo)

Divide both sides of this equation by Vi{®) to obtain the network function of the circuit

RACE 4
H) =310 " Tr 0D

(5)

Next. we put the network function into the form specified by Equation 4. Notice that the real part
of the denominator is | in Equation 4. Divide the numerator and denominator by 13 in Equation
5 to get

4
) (a)) . 3 _ 0308
M= Ve) "B, 105 |, o @
13 13 52

Comparing the network functions given by Equations 4 and 6 gives

k=0308 V/V and p = 52 rad/s



Example 3:

Consider the circuit shown in Figure 5. The input to the circuit is the voltage of the voltage
source, v{). The output is the voltage across the 5 €2 resistor. vo(). The network function that
represents this circuit is

H(w)=~e\?) _ 020822 )

vi({l)) l""g;_

Determine the value of the capacitance. C.

— AN 0

3Q +

+\v(t) 5Q § v (1)
@0 saS v
1| o

Figure 5 The circuit considered in Example 3.

Solution: The circuit has been represented twice. by a circuit diagram and also by a network
function. The unknown capacitance, C, appears in the circuit diagram, but not in the given
network function. We can analyze the circuit to determine its network function. This second
network function will depend on the unknown capacitance. We will determine the value of the
capacitance by equating the two network functions.

A network function is the ratio of the output phasor to the input phasor. Phasors exist in
the frequency domain. Consequently, our first step is to represent the circuit in the frequency
domain, using phasors and impedances. Figure 6 shows the frequency domain representation of
the circuit from Figure 5.

3Q +
Vi((o) 1 § 5Q Vo((o)
joC —
| | o
11

Figure 6 The circuit from Figure 5, represented in the frequency domain, using impedances and
phasors.



The impedances of the capacitor and the two resistors are connected in series in Figure 6. Vi(m)

is the voltage across these three series impedances and V() is the voltage across one of the
impedances. Apply the voltage division principle to get

V(o) =— V(o)

S5+3+

JjaoC

Divide both sides of this equation by Vj{®) to obtain the network function of the circuit

(8)

We can simply the algebra required to find C by putting the network function in Equation & into
the same form as the network function in Equation 7 before equating the two network functions.
Let's multiply the numerator and denominator by j@ C to get

v.((l))z s xjwczsc'
Vifw) g, 1 JjocC 1+

JjoC

Jjow
JoC(8)

H(a)): (9)

Equating the network functions given by Equations 7 and 9 gives:

Jjo Jw
=0.208
I+ joC(8) Vg 2
3

Comparing corresponding parts of this equation indicates that:

5C=0208 and 8C:%

The values of C obtained from these equations must agree. (If they do not, we've made an error.)
Solving these equations gives
C=41.60 mF and C=41.67 mF

These values agree, but there is some uncertainty in the third significant figure. It's appropriate
to report our result with two significant figures:

C=42 mF



Example 4:

Consider the circuit shown in Figure 7. The input to the circuit is the voltage of the voltage
source, v{). The output is the voltage across the 8 €2 resistor, vo(r). This circuit is an example of
a “first order high-pass filter”. The network function that represents a first order high-pass filter
has the form

V, (@)
Vi(@)

i ”"m (10)
l+ j—
P

H(o)):

The network function depends on two parameters, & and p. The parameter p is called the pole of
the first order high-pass filter. The parameter & is sometime referred to as a gain, but the high-
frequency gain of the circuit is given by the product kp. Determine the values of & and of p for
the first order high-pass filter in Figure 7.

—AN o

8Q +

<i> vi(t) 0.8H § 8Q 5 v(t)

Figure 7 The circuit considered in Example 4.

Solution: We will analyze the circuit to determine its network function and then put the network
function into the form given in Equation 10. A network function is the ratio of the output phasor
to the input phasor. Phasors exist in the frequency domain. Consequently, our first step is to
represent the circuit in the frequency domain, using phasors and impedances. Figure 8 shows the
frequency domain representation of the circuit from Figure 7.

8Q +
Vi(w) j(0.8)w aQ § Vo(cu)

Figure 8 The circuit from Figure 7, represented in the frequency domain, using impedances and
phasors.

The impedances of the inductor and one 8 €2 resistor are connected in parallel in Figure 8. The
equivalent impedance is



(8)7(08)e
E (@)= (8)+7(0.8)w

The parallel impedance is connected in series with the other 8 € resistor. Vi(w) is the voltage
across the series impedances and V() is the voltage across the equivalent impedance, Z{w).
Apply the voltage division principle to get

!82]!0.8!&)
(8)+/(0.8)

V.(w)=mvi(ﬂ')
")+ (08)w

) (8)/(0.8) <
R (@) 7(08)0)+ (3)7 (08w @)
(64w .

“@ e85 @
_ jl6d)w
T 644 j(12.8)w

Vilo)

Divide both sides of this equation by Vi(®) to obtain the network function of the circuit

Ve lw)  j(64)e

H(e)=. (@) " 63+ /(2800 an

Next, we put the network function into the form specified by Equation 10. Notice that the real
of the denominator is | in Equation 10. Divide the numerator and denominator by 64 in
quation 11 to get

(@) i(64)e

V(o) 64 = Jo

H(w)= Vi(w) 64+ (128)0 = I i(128)e @
o4 e

Comparing the network functions given by Equations 10 and 12 gives

F=01VVand p="2 =5 rdss.
128



Example 5:

Consider the circuit shown in Figure 9. The input to the circuit is the voltage of the voltage
source, vi{1). The output is the voltage, vo(r), across the series connection of the capacitor and 16
k€2 resistor. The network function that represents a this circuit has the form

1472
Volw) 177
Vi(o) |+jﬂ

P

(13)

H(w)=

The network function depends on two parameters, = and p. The parameter = is called the zero of
the circuit and the parameter p is called the pole of the circuit. Determine the values of = and of p

for the circuit in Figure 9.
N\ o

8kQ +
16 kQ
Cj V(1) vo(t)
0.23 uF B
1T 3

Figure 9 The circuit considered in Example 5.

Solution: We will analyze the circuit to determine its network function and then put the network
function into the form given in Equation 13. A network function is the ratio of the output phasor
to the input phasor. Phasors exist in the frequency domain. Consequently, our first step is to
represent the circuit in the frequency domain, using phasors and impedances. Figure 10 shows
the frequency domain representation of the circuit from Figure 9.

O
8 kQ +
16 kQ
+
<_> Vi(w) Vo(m)
I Mo
Jw (0.23) T —
O

Figure 10 The circuit from Figure 9. represented in the frequency domain, using impedances and
phasors.



The impedances of the capacitor and the 16 k€2 resistor are connected in series in Figure 10. The
equivalent impedance is

Z,()=16000+ —2
Jj(023)e

The equivalent impedance is connected in series with the 8 k€2 resistor. V() is the voltage

across the series impedances and Vq(w) is the voltage across the equivalent impedance, Z(m).
Apply the voltage division principle to get

10°
i(023)@

8000+ 16000+ —10
i(023)e

_10° + j(0.23)w (16000)
“10°+ /(0.23) ( 24000)
10°+ j(3680) @

16000 +

V.(w): Vi((l))

Vi(o)

=_5Lvi(w)
10" + j(5520)@
10°
_ 1+ 7(0.00368)e _,
/BRI y, (0)

14 (0.00552)0 7

Divide both sides of this equation by Vi(®) to obtain the network function of the circuit

_Va(@) _1+(000368)0

(@)= (@) "1+ /(00052)w 9

Equating the network functions given by Equations 13 and 14 gives

. {572

L+ 7(0.00368)w % "J?
1+ 7(0.00552) e —“j_tg
P

Comparing these network functions gives

S T 7 T S R
0.00368 0.00552

"

=181.16 rads.




Example 6:

Consider the circuit shown in Figure | 1. The input to the circuit is the voltage of the voltage
source, v{r). The output is the voltage, v(r). across series connection of the inductor the 2 Q
resistor. The network function that represents this circuit is

|+j2

V,

H(w)= "(w):O‘Z 3 (15)
‘i((l)) l"’]‘;—;

Determine the value of the inductance, L.

N\ o
8Q +
2Q

4_“) V(1) v(t)

Figure 11 The circuit considered in Example 6.

Solution: The circuit has been represented twice, by a circuit diagram and also by a network
function. The unknown inductance, L. appears in the circuit diagram. but not in the given
network function. We can analyze the circuit to determine its network function. This second
network function will depend on the unknown inductance. We will determine the value of the
inductance by equating the two network functions.

A network function is the ratio of the output phasor to the input phasor. Phasors exist in
the frequency domain. Consequently, our first step is to represent the circuit in the frequency
domain. using phasors and impedances. Figure 12 shows the frequency domain representation of
the circuit from Figure 11.

8Q

o

Figure 12 The circuit from Figure | I, represented in the frequency domain, using impedances
and phasors.



The impedances of the inductor and the 2 €2 resistor are connected in series in Figure 12. The
equivalent impedance is
Z(w)=2+jelL

The equivalent impedance is connected in series with the 8 € resistor. V;(w) is the voltage

across the series impedances and V() is the voltage across the equivalent impedance. Zd ).
Apply the voltage division principle to get

2+ jew L
v :—".
i(w) 10+ij l(w)

24 jw L
\' = ———

o(@) 8+2+jowlL
Divide both sides of this equation by Vi(®) to obtain the network function of the circuit

V(@) 2+jeL
(@) 10+joL

Next. we put the network function into the form specified by Equation 15. Factoring 2 out of
both terms in the numerator and also factoring 10 out of both terms in the denominator we get

H(w)= ~==02 i (16)
|0(I+j(v—] 1+jo=
1 10

I+ jor = l+j£’-
02 2 00—
1+ jo— 142
10 25

The values of L obtained from these equations must agree. and they do. (If they do not, we've
made an error.) Solving each of these equations gives L =04 H.



The impedances of the inductor and the 2 €2 resistor are connected in series in Figure 12. The
equivalent impedance is
Z(w)=2+jelL

The equivalent impedance is connected in series with the 8 € resistor. V;(w) is the voltage

across the series impedances and V() is the voltage across the equivalent impedance. Zd ).
Apply the voltage division principle to get

2+ jew L
v :—".
i(w) 10+ij l(w)

24 jw L
\' = ———

o(@) 8+2+jowlL
Divide both sides of this equation by Vi(®) to obtain the network function of the circuit

V(@) 2+jeL
(@) 10+joL

Next. we put the network function into the form specified by Equation 15. Factoring 2 out of
both terms in the numerator and also factoring 10 out of both terms in the denominator we get

H(w)= ~==02 i (16)
|0(I+j(v—] 1+jo=
1 10

I+ jor = l+j£’-
02 2 00—
1+ jo— 142
10 25

The values of L obtained from these equations must agree. and they do. (If they do not, we've
made an error.) Solving each of these equations gives L =04 H.



domain, using phasors and impedances. Figure 14 shows the frequency domain representation of
the circuit from Figure 13.

The impedances of the capacitor and the 4 k€2 resistor are connected in series in Figure 14. The
equivalent impedance is
1

Z () =4000+ —
JjoC

The equivalent impedance is connected in series with the | k€2 resistor. Vj{w) is the voltage
across the series impedances and V(w) is the voltage across the equivalent impedance, Z ().
Apply the voltage division principle to get

I
joC v ( )zlfj.'wC(4000)vi
1000 + 4000 + ! 1+ j @ C(5000)

JoC

4000 +

V(@)= (@)

Divide both sides of this equation by V() to obtain the network function of the circuit

_Vel@) 1+ jeC(4000)
H(@)=%, (@) "T+J w C(5000)

(18)

Equating the network functions given by Equations 17 and 18 gives

. @
1+ joc(4000) " /gog
1+ @C(5000) |, . @

I+isss

Comparing these network functions gives

1 1
MC—W.Q and SMC—E

The values of € obtained from these equations must agree. and they do. (If they do not, we’ve
made an error.) Solving these equations gives

C=3577 yF and C=3.591 uF

These values agree, but there is some uncertainty in the third significant figure. It’s appropriate
to report our result with two significant figures:

C=36 yF



UNIT-05

Filters

» Material covered today:

— Nomenclature

— Filter specifications
« Quality factor
+ Frequency characteristics
« Group delay

— Filter types
* Butterwortn
* Chebyshev |
* Chetiyshev il
* Eliptic
* Bessel

— Group delay comparison example

Filters
i) [
¢
Filter >
out
Vie

Filters = Provide frequency selectivity and/or phase shaping




bl G G |~<ﬁn HrCas)
- w - [_ul «
e _ '
Provide frequency selectivity Phase shaping
or equalization
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Filter Specifications

» Frequency characteristics (lowpass filter):
— Passband ripple (Rpass)
— Cutoff frequency or -3dB frequency
— Stopband rejection
— Passband gain
« Phase characteristics:
— Group delay

+ SNR (Dynamic range)

+ SNDR (Signal to Noise+Distortion ratio)

« Linearity measures: IM3 (intermodulation distortion), HD3
(harmonic distortion), 1IP3 or OIP3 (Input-referred or output-
referred third order intercept point)

+ Power/pole & Arealpole

EECS 247 Lactirw 2 Pilers OO WMHE Page &




Lowpass Filter Frequency Characteristics

b )
Passhand Ripple (Rpass) 1 san
- - .
- 2
N i}
” =
h:::" e P 2 | Transition
- - of]
oL : - e Stopband
. . L
o J Rejection
o T
X! A
. v » F e 2 ) 3 2
. o Sus 3
2 v VY'\ £ %
.—Q_ﬂ‘ L‘"" r
Passband
Frequency
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Quality Factor (Q)

* The term Quality Factor (Q) has different definitions:

— Component quality factor (inductor & capacitor
0)

— Pole quality factor
— Bandpass filter quality factor

* Next 3 slides clarifies each

EECS 247 Lactizw 2 Pilars

00 XM MK Paget




Component Quality Factor (Q)
« For any component with a transfer function:

)= 1
”U""R(,.-)U:\'(*-)

« Quality factor is defined as:

= X(“"') Energy Stored
Q -
% R(,.,) Average Power Dissipation
EECS 47 Luctaw 2 Pilers D000 HE Page T

Inductor & Capacitor Quality Factor

« Inductor Q :
- — A
ey A ok

« Capacitor Q :

ZC:—,—I_ Oc=wCRp | E I
m—,uwC

EECE 247 Lactisw 2 PMlers CCXNMHE Paget




Pole Quality Factor

Jw
s-Plane

W, \WP N\
Oy
]

M

Op~ole

20

U.ax Hx“_ _,.-"l

ERCS 247 Lactsw 2 Miars

Bandpass Filter Quality Factor (Q)

H(if )

S

Magnitude (dB)

Frequency
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What is Group Delay?
Consider a continuous time filter with s-domain transfer function G(s):
— )
G(jw) = |G(jw)|e

Let us apply a signal to the filter input composed of sum of two
sinewaves at slightly different frequencies (Mo<<w):

valt) = A sin(ut) + Ajsin[(w+dw) t]
= The filter output is:
Vourlt) = A, | G{ju) | sin[.t+B(w)] +

A, | G j(wAw)]| sin[(wrAuwits B(wriw)]

EECS 247 Lactisw 2 Milars COMMINE P 11

What is Group Delay?
Vourlt) = A, |GG} sin {w | ts B )]}
+A; | G j(w*aw)] | sin {(‘,._\*) [“ ‘..-4-.\...:) ]}

2 Aw A
Since —— <<1 then [T-’]z 30

EECE 247 Lactisw 2 PMlers CoNI N Pem 2




What is Group Delay?
Signal Magnitude and Phase Impairment

Vourlt) = A, | Giju) | sin { w [H B ]} +

+ A, | G[ j(wAw)]| sin {(mm) [t e (’jj;‘ b __) = ]}
[ —
« |f the second term in the phase of the 2™ sin wave is non-zero, then the
filter's output at frequency w+Aw is time-shifled differently than the
filter's output at frequency ®
- “Phase distortion”
« |f the second term is zero, then the filter's output at frequency w+Aw
and the output at frequency w are each delayed in time by -{w)'n
* T, =-8(w)eis called the "phase delay” and has units of time

EECS 247 Lactisw 2 Milars SO NE P 1D

What is Group Delay?
Signal Magnitude and Phase Impairment

« Phase distortion is avoided only if:
du|m,\ )

e L

do

» Clearly, if B(w)=km, k a constant, < no phase distortion
= This type of filter phase response is called “linear phase”
->Phase shift varies linearly with frequency

* 1_,=-08(w)dwis called the “group delay” and also has units
of time. For a linear phase filter t_, =1 =k

2 1_,= T, implies linear phase

* Note: Filters with 8(w)=kw+c are also called inear phase filters, but
they're not free of phase distortion

EECS 247 Lactirw 2 Pilers ©5 008 N P M




What is Group Delay?
Signal Magnitude and Phase Impairment

If Ton= T 2 No phase distortion
Vourlt) = w +
+ A, | G j(w*Aw)] | sin [(u:‘hlu) (( e )]
If also| [=] | for all input frequencies within
the signal-band, wvg,, is a scaled, time-shifted replica of the
input, with no “signal magnitude distortion™ :
+ In most cases neither of these conditions are realizable exactly

EECS 247 Luctuw 2 Pilers ©0 008 N Pagx 18

Summary
Group Delay

« Phase delay is defined as:
Top = -O(@)® [ time]
* Group delay is defined as :
Ten = -d8(w)/do [time]

« If B(w)=kw, k a constant, = no phase distortion

* For a linear phase filter ©_, = 1., =k

EECE 247 Lactisw 2 PMlers CoININE P IE




Filter Types
Lowpass Butterworth Filter

=
+  Maxmally fiat amplitude . h,
within the Flter passhand 3 \
N . i
d” |H jw ) —0 f | L i
s 1=(} ¥ ! - .'11' i
B oo R N
. S e -
» Moderate phase distortion i = =L
-hlﬂ_ - ~ 1
]

]
Normalized Froguency
Exampbe: 3h Order Butterworth fllter

EECS 247 Lechure 2= Fillers 003 HEC Page 17

Lowpass Butterworth Filter

= Al poles YA
. Flnlas lqcamd on the unit e e s-plane
circle with equal angles A0 =4
o .I'. l‘\
{ l'l, I‘I';'
o : (L
b ]
"I'| f/-}-"J':I? ";
¢
L f
H"\*‘_‘_____,-'-'




Filter
Chebyshew |

Chebyshev | filter
— Ripple in the passband
— Sharper transition band
compared to Butierwarth
— |Poorer group delay
— As more nipple is allowed in
the passhand:
= Sharper transition band
« Poorer phase responsa

Types
Lowpass Filter

Mg mivadse (AW
-
-

R ”i
I 2
] |
g N 5
H By ALY
PN i
& o
_-——— li
L] 1 z
Normalized Freguency

Exsmpis: %5 Crdar Chabyabay dBar

EECS 247 Lechure 2= Fillers
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Chebyshev | Lowpass Filter Characteristics

All poles
Poles located on an ellipse
inside the unit cirnde
Allowing more ripple in the
passband:
=*Marrower transition band
= Sharper cut-off
=»Higher pole O
=*Poorer phase response

Y g plane

.1.5‘

« Chebyshev | LPF 3dB passband ripple
= Chehyshey | LPF 0.1 dB passhand ripple
Example: 3th Order Chebyshey | Filter

EECS 247 Lechure 2= Fillers
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Filter Types

Chebyshev Il Lowpass
Chebyshev Il fiter —
- Rippleinstopband ~ § _ P
— Sharper transition 3 R
band compared to v
e | |
— Passband phase
more linear -
compared to it
Chebyshev | i \~\
1'271 ey
R |
0 (X} 1 13 2
Frequency [(Hz]
Example: Sth Order Chebyshev 11 filter
EECS D47 Lectiaw 3 Miars SO NE P 1
Filter Types
Chebyshevillowpass
/- '\
« Both poles & zeros
— No. of poles n 4
— No. of zeros n-1 s-plane
+ Poles located both inside ol |
& outside of the unit circle L
« Zeros located on j. axis f
« Ripple in the stopband +— —
only ) |
.
.
P T :
th Order 4 poles |

Chebyshev il Filter 4 i

EECS 247 Lactizw 2 Pilars CSININE P 3




Elliptic Lowpass Filter
= Elliptic filter § I
- Ripple in passband i 1
— Ripple in the siopband ’
— Sharper transition band = ]
comipared to Butierworth &
both Chebyshevs e
— Poorest phase rasponse ¥ T N
! e
|
£
4] )

Filter Types

Nermalized an_lr.r}-

Exmmpia: 3th Order Elipiic Slier

EECS 247 Lechure 2= Fillers o 04 HE. Foage
Filter Types
Elliptic Lowpass Filter
= Bath poles & zeros *J;l-u'
— Moo of poles n s-pl
— Mo of zeros n-1
= ZFesos located on fo axis
*  Sharp cut-off
SrMarrower transition
beand o
S¥Paole O higher
compared 1o the
presvious. fibers
Fale
7 Feron
¢

Examipls: Jth Order Elliptic Fllter

EECS 247 Lechure 2= Fillers




s-plane

=

a8 Pole

Filter Types
Bessel Lowpass Filter

Bessel

~ Al poles

~ Maximally fiat group

delay

— Poor amplitude

attenuation

— Poles outside unit circle

(s-plane)

— Relatively low Q poles

Exampie: 3th Order Bessel filter

o

© 02008 HX

Piters

EECS 247 Lactaw 2

Magnitude Response of a Bessel Filter as a

Function of Filter Order (n)

=

© 53008 N

Piders
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Filter Types
Comparison of Various Type LPF Magnitude Response

. S
£ %_
3
0 N N
1 NS
=
- 1l
. ' 3 2
Normalized Freguency
Bessel
All 5th order fiters with same comer freq. Butterworth
CREDYSHEY | e
Chebyshev Il

EECS 247 Lactisw 2 Milars SO NE P 2

Filter Types
Comparison of Various LPF Singularities
J
» Poles Bessel
x Poles Butterwerth .
Poles Elliptic

» Zeros Elliptic G S-plane
+ Poles Chcbyshev 10.1dR -

» -

= -

.
LIS
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Comparison of Various LPF Groupdelay

Ref: A Zvexy, Mandbook of Mher et Wik, 1967,

EECS 247 Lactisw 2 Milars COININE P 8

Group Delay Comparison
Example

» Lowpass filter with 100kHz comer frequency
+ Chebyshev | versus Bessel
— Both filters 4" order- same -3dB point
— Passband ripple of 1dB allowed for Chebyshev |

EECE 247 Lactizw 2 Milars CSININE P 0




Magrituce (A

Magnitude Response

—— &% Ovie Cratyches |
—— &t Orcie Bunanl

Precamrcy x|

EECS 247 Lactaw 2

P s v g o

Phase Response
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Group Delay

i o

g o
Normalized Group Delay
3




Step Response

Intersymbol Interference (ISl)

151-* Broadening of pulses resuliing in mterference between successive ransmitted
pulses
Example: Simple RC filier

EECS 247 Lechure 2= Fillers © 0008 HC. Page 3




Pulse Broadening
Bessel versus Chebyshev

e 1
Outpaut

i |

o | |

A4
|

o TR or ATt Tt 1 —_—
Bth order Bessel dth order Chebyshev |

Chebyshev has more pulse broadening compared bo Hessel = More 151

EECS 247 Lechure 2= Fillers © 0008 HEC. Page X

Response to Random Data
Chebyshev versus Bessel

Input Signal:
Symbol raie 1/130kH~*

o

—
"T—
—_,-'-:_-|.
==
=g
—

_.;—
_.
[ r

! V
o LE B a o T
H L
4ib order Bessel 4th order Chebyshey
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Measure of Signal Degradation
Eye Diagram

FEANTTHIONE 000 I,

Eye diagram is a useful graphical #lustration for signal degradation
Consists of many overlaid traces of a signal using an oscilloscope
where the symbol timing serves as the scope trigger

It is a visual summary of all possible intersymbol interference
waveforms

— The vertical opening - immunity o noise

~ Horizontal opening < Sming jitter

EECS 247 Lactisw 2 Milars SO NE P 0

Measure of Signal Degradation
Eye Diagram

Magratude (d8)
Group Daly [sorm el d)

Paguency ] [ ———
*  Random caia win symbol rates:
- 1S0kHz
- 1100xHz
- V130kHz

EECS 247 Luctirw 2. Pilers © 03008 N P 0




Eye Diagram
Chebyshev versus Bessel

b
Input Signal x
Random data .
Symbol rate:1/ 1 30kHz it
T
- S
4th order Bessel ' 4th order Chebyshey 1
EECS 247 Lactaw 2 Miers SO0 NE Page 41

Eye Diagrams




Eye Diagrams

Random dats maximum symbol rate <> 1/100kHz

Filter with constant group delay = More open eve 2 Lower BER (bat-error-rate

EECS M7 Lactaw 2 Miars SO NE P 0

Summary
Filter Types

— Filters with high signal attenuation per pole =
poor phase response

— For a given signal attenuation requirement of
preserving constant groupdelay - Higher order
filter

« In the case of passive filters = higher component count
« Case of integrated active filters = higher chip area &
power dissipation

— In cases where filter is followed by ADC and DSP

= Possible to digitally correct for phase non-linearities
incurred by the analog circuitry by using phase equalizers




RLC Filters

*Bandpass filter: i Fy

I poin Fin L I

= 7
n 54 SREs

wa=1 /IT
e R
Q-MRC_E

Singularities: Complex conjugate poles + zeros and zero & mfmity

EECS 247 Lechure 2= Fillers © 000 HE. P 4

RLC Filters

*Design a bandpass filter with:
*Center frequency of 1kHz
() of 20

*Assume that the inductor has series R resulting in an
inductor ) of 40
*What is the effect of finite inductor (} on the overall ()7

EECS 247 Lechure 2= Fillers © 000 HEC P




RLC Filters
Effect of Finite Component Q

Q20 (ideal L)
O=13.3 (Qy =4

Magnmade (18)
© &

09K " 100 TR

=Component Q must be much higher compared

to desired filter Q
RLC Filters
] Vo
Vi L Ic

Question:
Can RLC filters be integrated on-chip?

EECS 247 Lactirw 2 Pilers 053008 HE Frgm




Monolithic Inductors
Feasible Quality Factor & Value

» A A
<L CxAs J wm Golt
in 4 "o /‘ 1
AN R
- 15+ g * .
: s U ki Gmal
0w " “\:/' L
S0e1Swm Al B
*
5 = A .
CMOG fues Al
n - ~ T
o | v 1w (]
Indacsancc indh

& Feastble monolithic inductor in CMOS tech. <10nH with Q <7

<Ref. "Radio Frequency Filters”, Lawrence Larson; Mead workshop presentation 1888

EECS 47 Lnctuw 2 Pilers ©0INE NE P

Monolithic LC Filters

* Monolithic inductor in CMOS tech.
— L<10nH with Q<7

* Max. capacitor size (based on realistic chip area)
— C<10pF

< LC filters in the monoilithic form feasible:

- Frequency >500MHz
- Only low quality factor filters

Learn more in EE242

EECE 247 Lactisw 2 PMlers CSININE Pum X




Monolithic Filters

Desirable to integrate filters with critical frequencies
<< S500MHz

Per previous slide LC filters not a practical option in
the integrated form for non-RF frequencies
Good alternative:

=Active filters built without the need for inductors

EECS 247 Lechure 2= Fillers © 03008 HEC. Page 31




The Fourier Transform

1.1 Fourier transforms as integrals

There are several ways to define the Fourier transform of a function f: R —
C. In this section. we define it using an integral representation and state
some basic uniqueness and inversion properties, without proof. Thereafter.
we will consider the transform as being defined as a suitable limit of Fourier
series, and will prove the results stated here.

Definition 1 Let f : R — R. The Fourier transform of f € L'(R), denoted
by F[fi(.). 1s given by the integral:

1 30
Fifl(x) := E/ f{t)exp(—ixt)dt

for x € R for which the integral exists. *
We have the Dirichlet condition for inversion of Fourier integrals.

Theorem 1 Let f : R — R. Suppose that (1) f_’;_ |f| dt converges and (2)
mn any finite interval, f.f' are mecewise contmuous with at most finitely many
mazima/mimima/discontinuities. Let F = F|f]. Then if f is continuous at
t € R, we have

f(t) = \/% . F(r)exp(itr)dr.

*This definition also makes sense for complex valued f but we stick here to real valued

f



Moreover, if [ is discontinuous at t € R and f(t +0) and f(t —0) denote the
right and left hrmts of f at ¢, then

1 1 - ;
5[[(! +0)+ f(t=0)] = —ﬁ_n L F(x)exp(itr)dz.
From the above, we deduce a uniqueness result:
Theorem 2 Let f.g: R — R be continuous, f'.q' piecewise continuous. If

Flf)(x) = Flal(x). ¥x

then
f(t) = glt). ¥t

Proof: We have from inversion, easily that
1 e .
flty= ﬁ/ Ffl(x) exp(itx)dr

l £ s
= ﬁ/:xffg](r)oxp(“r)d-r
(m}

Example 1 Find the Fourier transform of f(t) = exp(—|t|) and hence using

mversion, deduce that f:’ %g = % and Lx ’:‘:‘;ﬁdx = 'ug(_‘). t>0.

Solution We write

l >
F(x)= E‘/ Af(f)exp(—-l'.tf)df

= # [/:L exp(f(1 —ix))dt + /o‘ exp(—1(1 + ix))]

Bos
T Vw142

Now by the inversion formula.

l &S
exp(—lt) = —= [ F(x)explixtytr

T 1 +2
2 ™ cos(rt)

Twjy 1432

_1 [ * exp(ixt) +oxp(—i1't)d'
0




Now this formula holds at ¢ = 0, so substituting ¢ = 0 into the above gives
the first required identity. Differentiating with respect to f as we may for
t = 0, gives the second required identity. O.
Proceeding in a similar way as the above example. we can easily show
that \ )
JL'ivxp(—ilz)l(t) = oxp(—Eri), rcR

We will discuss this example in more detail later in this chapter.

We will also show that we can reinterpret Definition 1 to obtain the
Fourier transform of any complex valued f € LI(R). and that the Fourier
transform is unitary on this space:

Theorem 3 If f.g € L2(R) then F|f]. Flg) € L*(R) and
[ 1w @~ [ Fin@ T

This is a result of fundamental importance for applications in signal process-
ing.

1.2 The transform as a limit of Fourier series

We start by constructing the Fourier series (complex form) for functions on
an interval [—x L. wL]. The ON basis functions are

ot. im0l

1

1) =
)=
and a sufficiently smooth function f of period 27 L can be expanded as

~

1 =L
M=y (m /_ dl(!)t"*‘d:) et

n=—xc

For purposes of motivation let us abandon periodicity and think of the func-
tions f as differentiable everywhere. vanishing at ¢ = £xL and identically
zero outside [—w L, wL]. We rewrite this as

= 1 ..n
f(t) = Z f?mﬂi)

n=-—x

which looks like a Riemann sum approximation to the integral
) R ™
flt) = —/ F(A)e™MdA (1.2.1)
2 foa

3



to which it would converge as L — oo, (Indeed. we are partitioning the A
interval [—F, L] into 2L subintervals, each with partition width 1/L.) Here,

flA) = f Fit)eMdt. (1.2.2)

Similarly the Parseval formula for f on [—axL. 7 L],

wl
[ Lf(0) 2t =
—xL

goos in the limit as L — oo to the Plancherel sdentity

e

1 -.n
3 EUEEHZ

A= —0

g O
2 f () et = f |F(A)[2dA. (1.2:3)
— —

Expression (1.2.2) is called the Fourier infegral or Fourier transform of f.
Expression {1.2.1) is called the mverse Fourter integral for f. The Plancherel
identity suggests that the Fourier transform is a one-to-one norm preserving
map of the Hilbert space L?[—oo, 00| onto itself {or to another copy of it-
self). We shall show that this is the case. Furthermore we shall show that
the pointwise convergence properties of the imverse Fourler transform are
somewhat similar to those of the Fourier series. Although we could make
a rigorous justification of the the steps in the Riemann sum approximation
above, we will follow a different course and treat the covergence in the mean
and pointwise convergence issues separately.

A second notation that we shall use is

1 - oM gy _ 1 .
FlfA) = Wor j:x fit)e™ " di = —m_ﬂl} (1.2.4)
P I iat

Note that, formally, F* |_ﬂ[:f] = \..I"E_f{t:l The first notation is used more
often in the engineering literature. The second notation makes clear that F
and F* are linear operators mapping L*[—oc, o] onto itself in one view, and
F mapping the signal space onto the frequency spoce with F° mapping the
frequency space onto the signal space in the other view. In this notation the
Plancherel theorem takes the more symmetrie form

[ irera= [~ iFnoFa

=1

Examples:



1. The box function (or rectangular wave)
1 f —w<t<rw
i =¢ 3 ift=24x (1.2.6)
0  otherwise.

Then, since II(t) is an even function and e~ = cos(At) + isin(\), we
have

f(A) = V22 F[j(A) = f

-ac

n(r)e'wdt=fn(t)m(Af)dt

; ;
- / cos(A)dt = hi;*—’\) = 2 sinc A.
-7

Thus sine A is the Fourier transform of the box function. The inverse
Fourier transform is

/ b sinc{A)eMdA = T1(#). (12.7)

~

as follows from (?77). Furthermore, we have

o

f [TT(t)[dt = 27

-0
o~

/ | sine (A)2dA = 1
—80

from (?77), so the Plancherel equality is verified in this case. Note
that the inverse Fourier transform converged to the midpoint of the
discontinuity. just as for Fourier series.

2. A truncated cosine wave.
cosdH f —m<t<nw
fiy=¢ -1 ift =4

2
0 otherwise.

Then. since the cosine is an even function. we have
f(X) = V2= FIfl(A) = / “ F(tye™Mde = / cos(3t) cos(At)dt

_ 2Asin(Arw)
U



3. A truncated sine wave.

sindt if —=<t<nw
J(1) = { 0 otherwise.

Since the sine is an odd function. we have

F(A) = V2aF[f](A) = f e Ft)e™Mat = —i / ’ sin(3t) sin(At)dt
—6i sin( A7)
[

4. A triangular wave.

1+t f —1<t<0
f(t)= -1 fo<t<1 (1.2.8)
0 otherwise.

Then. since f is an even function, we have

~ 1
FIN) = V22 F[£l(N) =/ f(t)e Mt = 2/ (1 — 1) cos(At)dt
-0 0

2 —-2cos )
S S

NOTE: The Fourier transforms of the discontinuous functions above decay
as i for |A| — oc whereas the Fourier transforms of the continuous functions
decay as . The coefficients in the Fourier series of the analogons functions
decay as . "% respectively. as |n| — oc.

1.2.1 Properties of the Fourier transform

Reeall that . - i
FUIN = 2= / (06t = =Y

1 = it
Flal(t) = 7~ A a(N)e" ™ dA
We list some properties of the Fourier transform that will enable us to build a
repertoire of transforms from a few basic examples. Suppose that f. g belong
to L'|—oc. oc). Le.. [ |f(#)|dt < oc with a similar statement for g. We can
state the following (whose straightforward proofs are left to the reader):



1. F and F* are linear operators. For a,b € C' we have
Flaf + bg| = aF[f] + bFlg]. F'laf +bg] = aF*[f] +bF"[g].

2. Suppose t" f(t) € L'[——oo.oc.] for some positive integer n. Then

d"

Fi" 1)) = i" o

{FINn}
3. Suppose A"f(A) € L'[—oc. o] for some positive integer n. Then
d”
FIN SN = "= F"[f1(1)}-

4. Suppose the nth derivative f™(t) € L'[—nc, o] and piecewise contin-
uous for some positive integer n. and f and the lower derivatives are
all continuous in (—oo.oc). Then

FIMA) = (2" FIAM})-
5. Suppose nth derivative fI"/(\) € L'[—oc, x| for some positive integer

n and plecewise continuous for some positive integer n. and f and the
lower derivatives are all continuous in (—oc. oc). Then

F ) = (—it)"FIf)(e).
6. The Fourier transform of a translation by real number a is given by
FUf(t —a)(A) = e MFF](A).
7. The Fourier transform of a scaling by positive mumnber b is given by
1 A
FU®IN) = 3 FIG)-
8. The Fourier transform of a translated and scaled function is given by

L
Flf(—all(3) = e P FIf](3).

Examples



o We want to compute the Fourier transform of the rectangular box func-
tion with support on [e.d]:

1 fe<t<d
Rit)={ 3 ift=cd
0  otherwise.
Recall that the box function
1 if —w<t<nw
i) =¢ 3 ift=x+x
0 otherwise.

has the Fourier transform [1(A) = 27 sinc A. but we can obtain R from
IT by first translating { — s = — E;-dl and then rescaling s — f_‘—rs:

2 c+d
R(t)y=11 3 — :
(t) (d_c Fd—c)
2
R(A\) = -i”—a"*“‘f"/“-"sinc(z’l)i). (1.2.9)
d—c d—c¢

Furthermore, from (?7) we can check that the inverse Fourier transform
of Ris R, ie.. F{(F)R(t) = R(t).

e Consider the truncated sine wave
sindt f —w<t<nw
= { 0 otherwise

with i sin(Am)

; —6isin(Ax

==
Note that the derivative f' of f(#) is just 3g(f) (except at 2 points)
where g(f) is the truncated cosine wave

cosdt f —m<t<w
gt)=¢ -3 ift =<7
0 otherwise.

We have computed
. 2Asin(Ax)
g('\) v o 9 T 1\2 ]

50 3G(A) = (iA)f(A). as predicted.

e Reversing the example above we can differentiate the truncated cosine
wave to get the truncated sine wave. The prediction for the Fourier
transform doesn’t work! Why not?



1.2.2 Fourier transform of a convolution

The following property of the Fourier transform is of particular importance
in signal processing. Suppose f, g belong to L =1

Definition 2 The convelution of f and g is the function [ = g defined by
(f + g)(t) =f _ fit — xygix)dr.

Note also that (f = g)(t) = E:_ Flr)g(t — x)dr. as can be shown by a change
of variable.

Lemma 1 f =g & LY—o0, 0] and

f_|f=g[r1|dr=f s [ ool

= i

Sketch of proof:

]: |f + a(t) |t = f: U: f(x)alt -:;u:) di
=]: U: |§{i‘—:]|df) \f(x)|dz =f: |g[f;.|.:ffj:|ﬂ:)|d:_

Theorem 4 Leih = f+g. Then

O

h(A) = F{A)G(A).

Sketch of proof:

hix) = f:: fegit)e Mdi = [: U:: fiz)gl(t - :)d:) "

_ f“ F(x)e—i (fh e _I}!_.—i.i[!-rl‘,”) dr — fﬁ Flx)e—dz 3())

= F(A)a(A).



Exercise 9 Let f(t) be defined for all t > 0 and extend it to an odd function
on the real line, defined by

[ty ife>0,
G(')={ —f(~t) ift<0.

By applyang the results of Exercise 7 show that. formally,

j(t):z/ sinat dn‘/' fls)sinas ds, t > 0. (1.4.15)
mJo 0

Find conditions on f(t) such that this pointunse expansion is rngorously cor-
rect.

1.5 Relations between Fourier series and Fourier
integrals: sampling

For the purposes of Fourier analysis we have been considering signals f(f) as
arbitrary L*|—oc. oo functions. In the practice of signal processing, however.
one can treat only a finite amount of data. Typically the signal is digitally
sampled at regular or irregular discrete time intervals. Then the processed
sample alone is used to reconstruct the signal. If the sample isn’t altered.
then the signal should be recovered exactly. How is this possible? How can
one reconstruct a function f(f) exactly from discrete samples? The answer.
Of course, this is not possible for arbitrary functions f(#). The task isn't
hopeless. however, because the signals emploved in signal processing, such
as voice or images. are not arbitrary. The human voice for example is easily
distinguished from static or random noise. One distinguishing characteristic
is that the frequencies of sound in the human voice are mostly in a narrow
frequency band. In fact, any signal that we can acquire and process with real
hardware must be restricted to some finite frequency band. In this section we
will explore Shannon-Whittaker sampling. one way that the special class of
signals restricted in frequency can be sampled and then reproduced exactly.
This method is of immense practical importance as it is employed routinely in
telephone. radio and TV transmissions, radar. ete. In later chapters we will
study other special structural properties of signal classes, such as sparsity.
that can be used to facilitate their processing and efficient reconstruction.

Definition 3 A function f i{ smd to be frequency band-limited of there exists
a constant £} > 0 such that f(A) = 0 for |\ > Q. The frequency v = % is
called the Nyquist frequency and 2v is the Nyquist raie.

20



1.6 Relations between Fourier series and Fourier
integrals: aliasing

Another way to compare the Fourier transform with Fourier series is to peri-
odize a function. The periodization of a function f(#) on the real line is the
function

2
PIfit)= Y f(t+27m) (1.6.18)
m=—ac

Then it is easy to sce that P{f] is 2x-periodic: P[f](t) = P{f](t + 2=). as-
suming that the series converges. However. this series will not converge in
gzeneral. so we need to restrict ourselves to functions that decay suffiuciently
rapidly at infinity. We could consider functions with compact support, say
infinitely differentiable. Another useful but larger space of functions is the
Schwartz class. We say that f € L¥[—oc.20] belongs to the Schwartz class if
f is infinitely differentiable everywhere. and there exist constants €,y (de-
pending on f) such that |l"$_-[| S Chqon Rforeachn.g =0,1.2,---. Then
the projection operator P maps an f in the Schwartz class to a continuous
function in L2[0, 27| with period 27. (However, periodization can be applied
to a much larger class of functions. e.z. functions on Lzl—x. oo] that decay
as 77 as [t| — oc.) Assume that [ is chosen appropriately so that its peri-
odization is a continuous function. Thus we can expand P[f](f) in a Fourier

series to obtain i

Pifl(t) = Z c,.t'"‘

n=—ac

where
_L/zxpi\' _"ddf—L 3% t -inld _L}’-
Cn = 5= i fit)e _Qz/:x!( Je - (n)

where f()) is the Fourier transform of f(f). Then,

}: ju+2=m)=2lT D Fmye™, (1.6.19)

n=-no R=—-5C

and we see that P[f](f) tells us the value of f at the integer points A = n.
but not in general at the non-integer points. (For ¢ = 0. equation (1.6.19) is
known as the Poisson summation formula. 1f we think of f as a signal. we see
that periodization (1.6.18) of f results in a loss of information. However.
if f vanishes outside of [0,27)) then P{f]|(f) = f(t) for 0 <t < 27 and

f(0) =Y fm)e™, 0<t<2s
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UNIT WISE OBJECTIVE BITS:

FOURIER SERIES AND POLYPHASE CIRCUITS.
A) STATE WHETHER THE GIVEN STATEMENT IS TRUE OR FALSE.

1) Fourier serics is a trignometric serics.

2) All fourier series are convergent.

3) All functions of time can be transformed into equivalent fourier serics .

4) Perodic functions of period T is having the property fit )= fi t + nT ), where n is any
integer.

5) All odd functions of periodic nature turns into a fouricr sine series .

6) If a function is cven then the fourier series only contains cosine serics.



7) In order to represent a periodic function into an equivalent fourier series the function must
satisfy Drichlets conditions for convergence.
8) First harmonics are called as fundamental harmonics.

9) Active power for polyphase circuit is sum all respective phase powers .
10) There are only two possible phase sequence for 3 phase circuit.

B) FILL IN THE BLANKS.

1) For a sinusoids average value is given by in terms of maximum value.
2) Form factor is the ratio of :
3) Ratio of maximum value of sinusoids to rms valuc is factor.

4) Jis complex operator defined by 4

5) For a 3 —phase balanced star system, line voltages are _ deg. Lead of their resp. phase

voltages.

6) The following property is true for ____ function, f(t )= fi-1).

7) The following property is true for functon , fit)=- (-t ).

8) The fourier series cocfficient of ¢ f(t) arc ¢ times the corresponding fourier cocfficient of
f(t).ifcis___ .

9) The fourier serics of periodic function f (1 ) of period T is given by

10) Fundamental term of fourier series in above series given by )

C) MULTIPLE CHOICE OBJECTIVE QUESTIONS.

1) Drichlets condition for fourier scries
a) finite no. of discontinutics in f{t)
b) all discontinuties bounded in fit)
¢) finite no. of maxima and minima in f(1)
d) all of the above

2) Half wave symmetry is expressed by
a) fiY)y=-fLt+-TR2)
b) fit)= f(t+T2)
¢) fit) =-R-1)
d) none of the above

3) Half wave symmetry is also called as
a) even symmetry
b) odd symmetry
¢) rotational symmetry
d) nonc of the above.

4) If fit) and g(t) have period T and a, b arc constants then function
Pit)=a fit)+ b git) will have period
a) T
b) 2T
c) T2
d) None of the above.

5) A periodic function primitive period is f(t Jequals to
a) constant
b) zero
<)t



d) infinity .
6) A plot showing cach of the harmonics amplitudes in the wave is called
a) discrete spectra
b) continucous spectra
c) phase spectra
d) none of the above
7) Convergence of fourier series will be faster in case of
a) sine wave
b) rectangular wave
C) ramp wave
d) impulse wave
8) The order in which the emfs of phase attain their maximum value is called
a) phase sequence
b) phase
c)harmonics
d)none of the above.
9)In a 3-phasc . 3 —wirc system if a unbalanced load is present then for analysis following
theorem is needed
a) Millmans thecorem
b) Superposition thecorem
¢) Nortans theorem
d) None of the above
10)For a star connected 3-phase . 3-wire system .the neutral current is zero .if
a) load is balanced
b) supply is balanced
¢) load and supply both balanced
d) always zcro,

D) ANSWER THE FOLLOWING QUESTIONS IN ONE SENTENCE

1) What is a periodic function?

2) What is odd function ?

3) What is even function ?

4) What is rotational symmetry ?

5) How average value is found from fourier scries ?

6) Express fourier series in exponential form .

7) What is fundamental harmonics term in fourier series ?
8) What is phase sequence ?

9) What is use of millmans theorem in polyphase circuit 7
10) How powers are calculated in 3 — phase system?

E) ANSWER THE FOLLOWING QUESTIONS IN BRIEF

1) Explain Fourier serics.

2) Explain odd symmetry and its significance .

3) Explain even symmetry and its significance .

4) Explain rotational symmetry and its significance.
5) Explain how fouricr cocfficients are calculated.



6) Explain the exponential form of fourier series and relation between its coefficients to original
fourier series cocfficients.

7)1 Draw 3-phase star system and give all the rotations

£) Prove that for 3 —phase star system line voltages are 30 deg ahead of their resp. phase
voltages

9) Draw phasor dia. of 3- phase star system.

10} Explain star delta load transformation.

F) SOLVE THE FOLLOWING FROBLEMS

1) In 3- phase . 400 V system Calculate average value of phase voltage maximum value of phase
voltage and line voliage.

2y In 3- phase , 400 V delta system repeat above problem.

3y Transform (34§ ) into its equivalent polar form.

4) Transform 4I_30 into its equivalent rectangular forme

5) Ifw=3001_30 andl = 3|_-45 in a svstem . calculate the complex power 5.

6) For the above problem . calculate active and reactive power .

7) Determine the symmetry present in the following functions and comment on fourier series .

a) sin t by cost

£) Determine the symmetry present in the following functions and comment on fourier series.

aj by fiwti=A Dewt<Pl
fiwt)=-A Ploat<2Pl
9y Calculate the average value of following functions .

a) simt byt
10} Calculate the average value of following functions .
a) cos t b} Sqg. t

1 1)/Determine the Fourier series of the wave shown in fig.

Witk

-r/d4|T/4 HT/ 4

-T/2

1214 3 —phase , 50 Hz star supply is supplying a combination of star and delta loads, find
currents, loads are balanced ,
impedance per branch for star load 2 | 30
impedance per branch for delta boad : 21_- 30 .



13) 3- phasc .3-wirc connected 400 V supply is supplying following loads ,calculate line
currents  impedance of each line from gencrator terminal to load terminal is z = | +4 ohm,,
Zry = 30 +j40 ohm. Zbr = 100 ohm. Zyb = 60 — j30 ohm.

14)A balanced star conneced load of 150 Kw takes a leading current of 100 A with a linc
voltage of 11 Kv, 50 Hz . Determine the per phase value of the clements.

15)A star connected load consisting of a pure inductance and two resistors |, is connected to a
symmetrical 3- phase supply . If the numerical value of all the branch impedance are the same ,
determine  the voltage across cach branch as a% of line voltage.

16)A symmetrical 3- phase 440 V  system supplies a star connected load . the branch
impedances arc

Z1=101_30 ohm ,Z2 =121_45 ohm.Z3 = 15|_40chm .

Assuming neutral of the supply to be carthed . calculate voltage to carth of star point . phase
sequence is R-Y-B.

17)On a symmetrical 3-phase system ., phase sequence R-Y-B, a capacitive reactance of 8 ohm is
connected across YB and a coil R+jX is connected across RY . determine R and X . the line
current Iy=0.

3 phase circuit:

Q.1) A three phase , 50 Hz star — connected balanced source has a per phase voltage of 231 volts.
The 3- phase load is as follows:

Between R ph. & Load neutral: 100 ohms resistor.

Between Y ph. & Load neutral: 100 ohms inductive reactance.

Between B ph. & Load neutral: Open Circuit.

Find the voltage between the source neutral and the load neutral. and draw the phasor

diagram.

Fourier Transform:-

Q.1) Explain the fourier transform of a single pulse of duration T sec and height V.

Discuss its amplitude spectrum and phase spectrum.

Q.2) A voltage from a source varies as :

V(©) =100 volts, fromO=0to © =1

V(©) = Zero volts, from© =1 to© =2
Find its average value and the 3" harmonic component. Assume the fundamental
frequency as 50 Hz.

Q.3) If the voltage in Q.2 above is fed to an R-L-C series circuit consisting of R= 20

ohms , L = 0.5 H. C = 2.254 micro-Farads. find the D.C component of current and the
third harmonic current.

LAPLACE TRANSFORM



A)STATE WHETHER THE GIVEN STATEMENT IS TRUE OR FALSE

1) Ina system of constant inductance current can change instantancously.

2) Ina system of constant capacitance voltage can change instantancously.

3) Inductor when ckt. is allowed to relax for infinite time will behave as open circuit.
4) Capacitor when ckt. is allowed to relax for infinite time will behave as short circuit.
5) Laplace transform method was invented by heavyside.

6) If the switching is done in n/w. consisting of resistors |, resistor will behave differently for

transicnt time.

7) If an impulse of a current is given .the capacitor voltage can change instantancously.
8) If an impulse of voltage is given , the inductor current can change instantancously.
9) Time constant for RL series circuit is LJ/R.

10) Time constant for RC series circuit is RC.

B) FILL IN THE BLANKS,

1) Initial condition for unchaged capacitor is 5

2) Laplace transform of Y(t)=a X1 (1)+ X 2(t) , if a. b arc constants, is

3) First shifting property of laplace trnsform is

4) Laplace transform of unit step function is

5) Ramp function can be obtained from unit step funcuon by the process of

6) Impulse function is also known as

7) Laplace trunsform of delayed unit step l’uncuon. bya.is

6) If g(t) and fit) are functions of time and G{(s) and F(s) arc thu' laplace transform resp.
inverse laplace transform of F(s) G(s) is given by theorem.

7) Laplace transform method can be used for solving _ differentential equations.

C) MULTIPLE CHOICE OBJECTIVE QUESTIONS.

1) anl@cc transform of unit step function is
a) s
by /s
c) s
d) s
2) Laplace transform of ramp function is
a) s
by /s
<) s
d) s
3) Inverse laplace trnsformof 1 is ____ function.
4)If F(s) is laplace transform of f(t) then LT of ¢ fit) is
a) F(s-a)
b) F(s+a)
c) ¢“F(s)
d) none of the above.
5)Laplace transform of ¢*"
a) ls+a)
b) s—a)
c) als
d) s/a
6) Convolution theorem is used to find inverse laplace transform of

. then



a) product of two transform
b) quoticnt
¢) addition
d) none of the above
7)if F(s) is laplace transform of f (1) . then laplace transform of a f(t) , where a is constant | is
a) aF(s)
b) sF@)
¢) Flas)
d) F(sa)
8)Final condition for inductor with current is
a) current source
b) short ckt.
¢) current source with short ckt. in serics
d) current source with short ckt. in parallel.

D) ANSWER THE FOLLOWING QUESTIONS IN ONE SENTENCE.

1) Who invented the laplace transform method ?

2) What are the properties of laplace transforms?

3) What is first shifting priperty 7

4) What is sccond shifting property?

5) What is the relation between ramp function and parabolic function?
6) What is convolution thcorem ?

7) What are different methods to find out inverse laplace transform ?
8) What is the wavcform synthesis ?

9) What arc the initial conditions ?

10) What are the final conditions ?

E) ANSWER THE FOLLOWING QUESTIONS IN BRIEF

1) Prove convolution theorem.

2) Write in brief about partial fraction method .

3) Prove first shifting property.

4) What arc the advantages of laplace transform ?

5) Write down the steps for solving network with laplace transform method.
6) Discuss all unit functions and their properrties .

7) State initial conditions and prove them.

8) State final conditions and prove thm.also state where they arc applicable .
9) Discuss behaviour of RL series circuit.

10) Discuss behaviour of RC series circuit with switch operated att=0.

F) SOLVE THE FOLLOWING PROBLEMS

1) Find out laplace transform of the folowing.
ajt b)sinfat) c)cos(at)
2) Find out inverse laplace transform of following.
a) U (s"+w))
by 1
c) I/s.
3) Find out inverse laplace transform of (25 +3)/ (s +3s+2) by partial fraction method.
4) Iffit) =sint and s perodic function. Find out its laplace transform.



5) Find out the initial and final value of ( s+h) /s (s+a).
6)Find the following function as combination of step & ramp function and obtain Laplace

transform.

NETWORK  FUNCTIONS

A)MULTIPLE CHOICE OBJECTIVE QUESTIONS.

9]
2)

3)

4)

5)

6)

7

8)

9

The driving point impedance is defined as
The Transfer impedance is defined as the ratio of transform voltage at one port to transform
current at
the function is said to have simple poles and zeros only if
a) the poles are not repeated
b) the zeros are not repeated
¢) both poles and zeros are not repeated
d) none of the above
The necessary condition for driving point function is
a) The real part of all the poles and zeros must not be zero or negligible
b) The polynomial P(s) and Q(s) may not have any missing terms between the highest and
lowest degree unless all even or odd terms are missing.
¢) The degree of P(s) and Q(s) may differ by more than one
d) The lowest degree in P(s) and Q(s) may differ by more than two
The necessary condition for transfer function is that
a) The cocfficient in polynomial P(S) and Q(s) must be real
b) Coefficient in Q(s) may be negligible
¢) complex and imaginary poles and zeros may not conjugate
d) if the real part of pole is zero then that pole must be multiple
The system is said to be stable. if and only if
a) all poles lic on right half of s plane
b) some poles lic on right half of s planc
¢) all poles does not lic on right half of s plance
d) none of the above
The transfer voltage gain is defined as
a) The ratio of transform voltage at onc port to current transform at other port.
b) The ratio of transform voltage at one port to voltage transform at other port.
c) Botha) and b)
d) none of the above.
The transform current gain is defined as
a) The ratio of transform current at onc port to current transform at other port.
b) The ratio of transform voltage at one port to voltage transform at other port.
¢) The ratio of transform current at onc port to voltage transform at other port.
d) Nonc of the above.
The driving point admittance is defined as
a) The ratio of transform voltage at one port to current transform at other port.
b) The ratio of transform current to voltage transform at same port.
¢) The ratio of transform current at onc port to voltage transform at other port.
d) none of the above.

10) Transfer admittance is defined as



a} The ratio of transform voltage at one port to current transform at other port.
b} The ratio of transform current  to voltage transform at same port.

¢} The ratio of transform current at one port to voltage transform at other port.
d) none of the above.

B) FILL. IN THE BLANKS.

1} The pair of terminals is customarily connected to the energy source which is driving force of

the network so that pair of terminal is known as of network.

2) Because of the similarity of impedance and admittance the two guantities are assigned one
Name a5 :

3) Itis conventional to define ___ as the ratio of an output guantity to an input quantity.

4) When r poles or zeros have the same value the pole or zero is said to be of .

5) When the wvariable = has the value such the network function vanishes .that complex
frequencies are known as of network function.

6) 'When the variable s has values such that the network function becomes infinite that complex
frequencies are known as of network function.

7y If the pole or zero is not repeated it is said to be .

For any function ,the total no. of poles is equal to total no. of zeros,

£) A one terminal pair network is an open circuit  for pole frquencies and for zero
frequencies.

9y Meywork function with __ in right half of s plane are known as non minimum phase.

C) STATE WHETHER THE GIVEN STATEMENT IS TRUE OR FALSE

1) A function relating currents or voltages at different parts of network, called transfer function.

2y The driving point impedance function is defined as the ratio of current transform to voltage
transform at same port.

3) Network function having n no. of zeros and m no. of poles and if n>m. then poles at infinity
is of degree n - mu

4) Metwork function having n no. of zeros and m no. of poles and if nem. then poles at infinity
is of degree m-n.

53 The pole represents a frequency  at which network function blows up.

6) Mecessary condition for driving point as well as transfer function . poles and zeros must be

conjugate if imaginary or complex

71 Metwork function with left half plane zeros are classified as non minimum phase.

8) Active network is stable if transfer function relating output to input has poles which are

confined to left half of s plane.

9y An equivalent requirement for a stable system is that bonded input must give rise to bounded

output.

10} Contours of constant wn are straight lines parallel to jw axis of s plane.

D) ANSWER THE FOLLOWING QUESTIONS IN ONE SENTEMCE

13 What is the network function 7

2) Define driving point and transfer function.

3y Deefine driving point impedance and transfer function.
4) Define transfer impedance and admittance function.

5) What is the voltage transfer and current transfer gain?
6) What are the poles and zeros?

7y 'What arc the requircment for the stable active network?



8) Define minimum phase and non minimuom phase function.
9) What is the scale factor of network function?

E) ANSWER THE FOLLOWING QUESTIONS IN BRIEF.

1) write short notes on driving point impedance and transfer function.

23 ‘What information do poles and zeros provide in respect of network to which they relate 7

3) Breifly discuss the restriction on pole zero location in the s plane for driving point impedance
function.

4) Show that first singularity of an RC admittance function is zero at origin of s plane.

5) State under what condition the concept of driving point transfer function can be used.

6) Define precisely the various transfer function of two terminal pair passive network.

7) Enumerate the important properties of driving point impedance function of one port passive
network.

8) Explain how time domain response of a system can be determined from s plane plot of poles
and zeros of its network function.and transform of network sources.

9y Briefly discuss the restriction on s plane zeros location in the s plane for transfer impedance
function.

10} Dreseribe the graphical procedure for finding time domain  behaviour from pole zero plot.

FISOLVE THE FOLLOWING PROBLEMS.

13 For the network shown find G12(5). Write the results in the form of polynomials in 8 to decide
poles and reros.

c2

sl . Wa
RZ

23 Find the transfer functions Z12(5) and G12(S) for the network shown in fiz.

Wl TIF Tlﬂ W
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TWO PORT NETWORK



A) MULTIPLE CHOICE OBJECTIVE TYFE QUESTIONS

1) For a two port network, the ofp short circuit current was measured with a 1 'V source at the i'p
terminal. the value of the current gives

al hl2

by yi12

¢y h21

dy ¥21

20If a passive reciprocal two port network with open circuit impedance matrix Zoc is terminated
in Z1 ohm the driving port impedance of overall network is

3) The resistance Rab of the circuit is

a} 12 ohms

by 10.8chms

¢y 6.75 ohms

dy 0.9 chms

4) Determine Z parameter of T network

a) 58,120

by 13.8.8.20

c) B.20.13,12

dy 58812

5) Find the Z parameter of the T network given by

ZA=510: FB=10l_ 90 : ZC=151 90

a) S0 15190 ;151_90 :10,_90

by 1500 10090 ; 104_-90 ; 25]_0

¢} 15811 71.57; 15190 ; 1590 5_90

dy 5190 : 15190 ; 15190 1581 1_71.57

6)The condition AD-BC = 1 for a two port network implics that the network is

a) Reciprocal network

by Lumped element network

¢) Loss less network

dy Unilateral element network

TiTwo port network are connected in cascade, the combination is to be represented  as a single
two port netwaork , the paramelers of the network are obtained by multiplying the individuals
a) Z parameter matrix

b) H parameter matrix

¢) Y parameter matrix

dy Transmission parameter matrix

8)For two port network o be reciprocal

a) Zl1 =722
by ¥21=YI12
c) H2l=-hi2

d) AD-BC =0
B} FILL IN THE BLANKS

1) In terms of Y parameters , the H paramcters are

2jln terms of transmission parameters . the z parameters are
3The ABCD parameters of the T network is

4)In terms of Z parameters , ﬂ'u:Ypa:.a.mm are

5)The ¥ parameters of the lattice are



6)If a two port n/w is passive , then we have . with the usual notations  relationship

a) hi12=h21
b) hi12=-h21
c¢) hll=h22

d) hllhi2-h12h2I =1
C) STATE WHETHER THE GIVEN STATEMENT IS TRUE OR FALSE.

1) In ABCD parameters . o/p current flows out into the transmission line .

2) Fora symmetrical n/w Za=7b, where, ZI1=Za + Zc . Z22=7b + Zc

3) Any 4 terminal black box is represented by Z, Y and h parameters.

4) For the cascade connection of two networks ABCD parameters have to be multiplied.
5) For a series parallel connection of two networks Z parameters have to be added.

6) The condition for a network to be loss less in terms of ABCD  parameters is A and D real
and B.C imaginary.

7) Ya, Yb. Yc arc the admittance of sub network of PI network . the short ckt. Admittance
parameters Y11 will be Yb + Yc

8) The short ckt, admittance parameter Y22 of the above n'w is Yb + Ye.

D) SUBJECTIVE TYPE QUESTIONS

) What is two port network ?
2) What arc the Z parameters? Why they are called open circuit  impedance parameters?
explain.
3) Derive the condition for the reciprocal network in terms of Z parameters.
4) What is the condition for the symmetrical network?
5) Derive the condition for the reciprocal network in terms of Y parameters.
6) Define open circuit admittance parameter.
7) Provethat Y1l= Y22.
8) What are the ABCD paramecters ? Define A.B, C.D individually.
9) Derive AD-BC=1
10) Derive A=D .
I1) Express ABCD paramcters  in terms of Z parameters .
12) What arc the ABCD paramcters?
13) Derive the condition for symmetrical n/w in terms of h parameters.
14) Define inverse hybrid parameters and prove that gl gl2 -gl2g21 = 1.
15) What are the various types of interconnections possible in 2 port network?

E) SOLVE THE FOLLOWING PROBLEMS

1) The n/w shown below, find Z paramcters.

2ohns

.

Z2ohms

Vi lohns 20hms V2

AV




2) Find Y parameters for the network shown below

2 o
1
3) Find transmis
I ¢
AN
== 1F T-1F

4) Current 11 and 12 entering at ports 1 and 2 resp. are given by following egn.
I1=05V1-02V2
12=-02V1+V2
Where VI and V2 are the voltages at two ports . find Z parameters and Verify that AD- BC =1
5)In a two port network, Z,, =2 ohm, Z,, =Z,, = 5 ohm, Z., = lohm,

Find (i) Y-parameters (ii) h -parameters (iii) ABCD parameters

FILTERS :

Q.1) Explain the classifications of filters in brief.

Q.2) Explain the band pass & band stop ( band reject) filters .

Q.3) Discuss the design procedure for the design of constant K- band pass filter in terms
of nominal characteristics impedance & cut off frequencies.

Q.4) For the constant K — band pass filter, show that the resonant frequency frequency of
individual arm should be the geometric mean of its two cut - off frequencies.

Q.5) Design a prototype band pass filter having the cut off freq. of 2000 Hz & 5000Hz &
nominal characteristics impedance of 600 ohms.

Q.6) A n - section filter comprises a series arm inductance of 20mH & two shunt
capacitors each of (.16 micro farad. Cakulate the cut off freq. & attenuation at 15
KHz.What is the value of nominal terminating impedance in band pass filter?

RESONANCE:
Q.1) Explain the meaning of the half power frequencies and derive their expressions for a
series RLC circuit.



[1] The period of the signal x(t) = 8 sin (0.8t + 1 /4) is [GATE 2010]
A. 0.41s

B. 0.81s

C. 1.25s

D. 2.5s

Ans:D

Answer

[2] The switch in the circuit has been closed for a long time. It is opened at t=0. At t=0%the
current through the 1uF capacitor is [GATE 2010]

(Y — WF A

(B) 1A (C) 1.254
A. OA
B. 1A
C.1.25A
D. 5A

Ans: B
Answer
[3] The second harmonic component of the periodic waveform given in the figure has an
amplitude of [GATE 2010]

,1 F 3

1T
5

oo w>»
2 N,k O

Ans:A
Answer
[4] As shown in the figure, a 1 resistance is connected across a source that has a load line

v+i=100. The current through the resistance is [GATE 2010]
.__.. I

N
Source vy 10

A. 25A
B. 50A
C. 100A
D. 200A
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Ans: B
Answer

[5] If the electrical circuit of figure (b) is an egiuvalent of the coupled tank system of figure (a),
then [GATE 2010]

) Coupled kank 'l‘ ) Ekectriml equivabznt

A. A,B are resistances and C,D capacitances
B. A,C are resistances and B,D capacitances
C. A,B are capacitances and C,D resistances
D. A,C are capacitances are and B,D resistances

Ans:D
Answer
[6] If the 12Q resistor draws a current of 1A as shown in the figure, the value of resistance R
is [GATE 2010]
1 R

A% AW

2A 1A i 1200 Jr_ﬁ'u'

A. 4Q
B. 6Q
C. 8Q
D. 18Q

Ans: B

Answer

[7] The two-port network P shown in the figure has ports 1 and 2, denoted by terminals (a,b)
and (c,d), respectively. It has an impedence matrix Z with parameters denoted by Z;. A 1Q resistor is
connected in series with the network at port 1 as shown in the figure. The impedance matrix of the
modified two-port network (shown as a dashed box) is [GATE 2010]
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Z,, z,,+1
z,+1 z,
z,,+1 2z,

z,,+1 Z,.,
221 222
Ans:C
Answer

[8] The Maxwell's bridge shown in the figure is at balance.The parameters of the inductive coil
are [GATE 2010]

é - .I
)
&

— —jf['-:-:-C_.'_l -

A. R=R2R3/R4, L=C4R2R3
B L:R2R3/R4, R:C4R2R3
C. R=R4/R2R3, L=1(C4R2R3)
D. L=R4/R2R3, R=1/(C4R2R3)

Statement for Q9 & Q10:
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(o]
‘?4 C =— 100V

t=0 +

The L-C circuit shown in the figure has an inductance L=1mH and a capacitance C=10uF
Question [9]: The initial current through the inductor is zero, while the initial capacitor voltage
is 100V. The switch is closed at t=0. The current i through the circuit is: [GATE 2010]
A. 5cos(5x10%t)A
B. 5sin(10%)A
C. 10cos(5x10%)A
D. 10sin(10*)A

Ans: D

Answer

Question [10]: The L-C circuit of statement is used to commutate a thyristor, which is initially
carrying a current of 5A as shown in the figure below. The values and initial conditions of L and C
are the same as in statement. The switch is closed at t=0. If the forward drop is negligible, the time
taken for the device to turn off is [GATE 2010]

L
Lo -
C =— 100V
L = D H 5
S -
100V = 54 200

A. 52us
B. 156pus
C. 312ps
D. 26us

Ans: A

Answer

[11] The voltage applied to a circuit is 100vV2 cos(1001t) volts and the circuit draws a current of
10V2sin(100Tit  +1/4) amperes. Taking the voltage as the reference phasor, the
phasor representation of the current in amperes is [GATE 2011]

A 10V22- Ti/4

B. 102£- /4

C. 104+ /4

D. 10N22+ 11/4

Ans:A

Answer
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Question Bank

Network Theory
Question Bank

Unit-1 JINTU SYLLARUS: Three Phase Circuits
Three phase circuits: Phase sequence — Star and delta connection — Relation hetwezn line and phase voltages and currents in balanced
systems — Analysis of balanced and Unbalanced 3 phase circuits — Measurement of active and reactive power.
1. {a) The power delivered to a balanced delta connected load by a 400 volt 3-phase supply is measured by two wattmeter method. If
the readings of the two wattmeter are 2000 and 1500 watts respectively, calculate the magnitude of the impedance ineach arm of the
delta load and its resistive compongnt?
(b) A balanced delta connectad load of (2+j3) per phasa is connected to a halanced three-phase 440V supply. The phase current is
10A. Find the
i. total active power
i.. Reactive power and
iil. Apparent power in the circuit. [8+8] . February 2008, sei-1
2. (2) On a symmetrical 3-phase sysiem, phase sequence RYB, a capacitive reactance of 8 is across YB and a coil (R+jX) cross RY,
Find R and X such that Iy =0.
(b Find the reading on the wattmeter when the network shown in figure 4 is connected to a symmedrical 440V, 3-@ supply. The phase
sequence is RYB. [3+8] February 2008, sei-2
3. (1) On a symmetrical 3-phase system, phass sequence RY B, a capacitive reactance of 8 is across YB and a coil (R+jX) cross RY.
Find B and X such that Iy =0.
(b) Find the reading on the wattmeter when the network shown in figure is connected to a symmetrical 440V, 3-p supply. The phase
sequence is RY B.[B+8] June 2004 sei-1
4. (a) Derive the expressions between phase and line voltages, and phase and line Currents for balanced 3-f star connected loads.
(b) A 3-phase 4 wire, 400V system feeds three loads (10-j8), (12450 and
{E+j10) connected in star. Find the line currenis, neniral current and tofal active power. [8+8]
June 2009, sat-2

5. What are the advantages of a poly phase syskem over a single phase system? [4]

April/May-07 set-2, sat-4
6. What is phase sequence ? Explain its significance. [6]

Aug/sept-07 set-1, ApnlMay-07 set-2, sel-4

7. What is the difference betwesn RYB phase sequence and RBY phase sequence ? [4]

May/ june-06 set-3
B. A 3-phase load has a resistance of 10 in each phase and is connecied in
i) Star
i) Delta against a 400V, 3-phase supply. Compare the power consumed in both the cases. [6]

May/ june-06 sat-3

9. Three identical impedances of (34§4) & are connected in delta. Find the equivalent star network such that the line current is same
when connecied to the same supply? [4]
Aug/sept-08 set-3, May/june-08 set-1, May/june-08 set-2
10. Derive the relationship berween line and phase quantities in a 3-phass balanced,
i} Star connected system and
ii) Delta connected system. [8) May/june-06 set-3, Aug/sept-06 set-4

11. A balanced 3 phase mesh connected load of (8+j6) 2 per phase is connected to a 3-phase balanced, 50Hz, 230V supply. Calculaie

i} Line current




ii) Power factor
iii) Reactive volt-ampere and
iv) Total volt-ampere. [8] May/june-08 set-3,
12. A balanced 3-phase system supplied from 400V, 50Hz supply has R, L, and C are 10Q,1H and 100uF resp. calculate the line
current, the power and power factor?[16]
Aug/Sep 2008 Set 4

13. A balanced 3-phase Delta connected load absorbs a complex power of 100KVA with a lagging power factor of 0.8 when the r.m.s
line to line voltage is 2400 volts. Calculate the impedance of each arm of Delta connected load. [6]

Aug/Sep 2007 Set 4
14. A balanced 3-phase Delta connected load of (2+j3) Q per phase is connected to a 3-phase balanced, S0Hz, 440V supply. Calculate
i) Total active power.
i) Reactive Power and
iii) Apparent power in the circuit. [8] April/May-07 set-3, set-4
15. A balanced 3-phase Delta connected load with voltage of 200V, has line currents as I, =10_90° , [ ,=10L-150? and I.=10L-30°

i) What is the phase sequence?
if) What are the impedances? [6] Aug/Sep 2007 Set 2
16. Three impedances of (7+j4) &, (3+j2) Q. (9+j2) Q are connected between neutral and the R, Y and B phases. The line voltage is
440V.Calculate,
i) The line currents
ii) The current in the neutral wire and
ii) Find the power consumed in each phase and the total power drawn by the circuit. [12]
Aug/Sep 2008 Set 3, May/june-08 set-1, 2

17. A symmetrical 3-phase, 3-wire, 440V Supply is connected to a star connected load. The impedances in each branch are Z,= (2+3)
Q. Z=(1-j2) Q and Z,= (3+j4) Q. Find its equivalent dzlta connected load. Hence, find the phase and line currents and the total
power consumed in the circuits. [16]

Aug/Sep 2008 Set 1,2, and 4
18. A symmetrical 3-phase, 100V, 3-wire supply feeds an unbalanced star connected load with impedances of the load as Zg=5L0"
Q. Z, =290 "W and Z;=4L_-90° Q. Find,

i) The line currents

ii) Voltages across the impedances

iif) The displacement neutral voltage. [10] Aug/Sep 2007 Set 2
19. Explain how power is measured in three phase delta connected load using two wattmeters.

[8] May/June-08 set-3

20. Two wattmeter's are used to measure power in a 3-phase three wire load. Determine the total power, power factor and reactive
power, if the two wattmeter's read
i) 1000W each, both positive
ii) 1000W each, but of opposite sign. [8] April/May-07 set-2. 4
21. In power measurement of 3-phase load connected by 3-phase supply by two wattmeter method. prove that tané=-v3 (W1-W2y
(W 1+W2) for keading power factor loads. [8]

May/June-06 set-1




UNIT-II JNTU SYLLABUS: D.C Transient Analysis

Transient response of R-I, R-C, R-L-C circuits (Series combinations only) for d.c- Initial conditions - Solution using
differential equation approach and Laplace transform methods of solutions.

1. Derive the expression for i) of a R-L series circuit when DC voltage is appliad to it at t=0 by closing the switch. Draw the

msponse curve ift) vs L. define time constant of B-L series circoit
[B] Mov/dec-04 sat-2

2. ia) Find i(t) for t =0, when the switch is closed at t= 0. The circuit was in Steady state at
# = in the following network shown in Figure, [8] June2009 set-2




3. () A de voltage of 100V is applied in the circuit shown in figure @ and the switch is kept open. The switch K is closed at t= 0. Find
the complete exprassion for the current.

andl 104
A ——AWA
. L

— 100v -

- 0.1H

{bp A de voltage of 20V is applied in a RL circuit where R = 5 and L= 10H. Find

i. The time constant

ii. The maximum value of stored energy. [3+8] June 2009 set-1
4. Find 3¢ (t) at t = 0+ while the switching is done from x to y at t= 0. As shown in figure. [18]

June2009 set-2, A prilMay-06 set-2, May/june- 06 set-1

® o 4V,
-

7 +
@ 10V -

5. Explain why the current in a pure inductance cannot change in zero ime. [8]
June-05, seid
6. Explain why the voltage across a capacitor cannot change instantanzously. [2]
Now/dec-05F setl, Novidec-04 setl, May/june-04 sei-1

7. Derive the expression for i (t) and voltage actoss a capacitor Velt) for series R-C circuit with DUC voltage applied to it at
t=0.Explain about the time constant of B-C circuit. [§] Novidec-d4 set3

8. A DC voltage of 20V is applied in a R-L circuit where R=5Q and L=10H. Find the

i) Time constant




i} The maximum value of stored epergy [8]
Augfsapt-07 sat-1.3.4, April/May-07 set1,3,4 Aug/sept-06 setd. 1.2 3

9. A constant voltage of 100V is applied at t=0 to a series R-C circuit having R=5MQ and C=20mF. Assuming no initial charge to the
capacitor, find the expression for i, voltage across R and C.[9]
Aung'sept-Doset-2

10. In the figure switch is closed at position 1 at t=0. At 1=0.5msec, the switch is moved to position 2. Find the expression for the
current in both the conditions and sketch the transients, [16]
May/ june-06 sei-4

1w 10

11. What is the significance of time constant of R-L circuit? What are the different ways of defining time constant?[4]
Nov/dec-05 sat-1, May/june-04 sat-1

12. Switch is moved from position 1 to 2 at t=0. Find the voltages Vy(t) and Vet) for t=0.[8]
Nov/dec-04 set3

13. Obtain the carrent it) for t=0, using the time domain approach.[2]

Novidec-04 set-4, May/june-03 sei-2

14, Switch is closad at t=0. Find the initial conditions at t(0%) for, i,,i, Vo di/dudiz/de d®izfdt and d5,/de[16]
Jume-05 set-4




t=0
i F W

i ‘W i)
ey ? 2 H
1

2

15. Compare the classical and Laplace transform methods of solution of the network [4]

Nov/dec- 05 set-4, June-05 sel-2
16, A DC voltage of 100V is applied in the circuit shown in fig. and the switch is kept open. The switch K is closed at =0 find the
complete expression for the current.[8]

Aungfsept-07 set 1.3 4 April/May-07 set 13,4 Aug/sept-06 set-3.4.2
E

205 ]_ .
W W
+ 10p.
1y 16 "D.LH

UNIT-III

JNTU SYLLABUS: A.C Transient Analysis
Transient response of R-L, R-C, R-L-C circuits (Series combinations only) for sinusoidal excitations — Initial conditions

- Solution using differential equation approach and Laplace transform methods of solutions

1 Find i ity in the circuit for the follewing figure Use Laplace method. [8] Tune 2008 sei-2
1?{ =0 11t i{t)
S
T -
-+~
2sint 2 1H

2. Derive an expression for the current response in B-L series circuit with a sinusoidal source. [16]
Aug/sept-08 sel-3.4, Mav/june-08 sel-1,3

3. In the circuit shown in fig, find the transient current when the switch is closed at t=0.Assume zero initial conditions.
™u

<

20 sinl Ot
&)
2F

H




4. In the circuit shown in fig, find the transient corrent when the switch is closed at t=0.Assume zero initial conditions. And also the

initial rate of change of curment.

3. A series B-L circuit with R=100€2, 1=1H has a sinusoidal voltage source 200sin (300(+¢) applied at time whene¢=0. Find

i} The expression for current

it} At what value of ¢ must the switch be closed so that the cument directly enter steady state.

6. A series RC circuil, with R=300, C=10uF has a sinusoidal voltage 230%2sin (2TIx50t). Find the transient response.

7. Distinguish between steady state and transient response?

B. A series B-L circuit with R=508 and [.=0.2H, has a sinusoidal voltage source V=150sin (5004+¢)V applied at time wheng¢=0. Find
the complete current.

9. In the two mesh network shown in fig, the switch is closed at =0 and the voltage source is given by V=130 sin (1000t) V. Find the

currents i1 and i2

10. An RL series circuit with R=300£ and 1.=1H has a sinusoidal applied voltage v=100cos (100t+¢) volts. If the swilch is closed

when ¢=43", obtain the resulting current transient.
11. The RL series circuit shown in fig. is operating in the sinusoidal steady state with the switch in position 1. The switch is moved to

position 2 when the voltage source is v=100c0s100t+45") v. obtain the current transient and plot the last half cycle of sieady state
together with the transient to show the transition.

z 3000

12. A serigs RLC circuit with R=58, 1=0.1H, C=500pF has a sinusoidal voltage v=100sin(230t+¢) volts applied at time whene=0.

Find the resulting current




Unit-d4 JNTU SYLLABUS: Network Functions,

The concept of complex frequency, physical interpretation of complex frequency, transforms impedance and transforms
circuits. Serkes and parallel combination of elements, terminal pairs or ports, Network functions for the one-port and two
port, poles and zeros, properties of driving point functions, properties of transfer functions.necessary conditions for
driving point functions, necessary conditions for transfer functions, time domain response from pole zero plot

1. Find the driving point impedance of the network shown in fig.

L
oH

471 IF

R

Find the poles and zeros and the scale factor of the network function. Nig) = (2541 W4(s24+55+6). How many zeros are at

infinity?

Determine the transform impedance of the network shown in fig.

=

Rqg4n

o
4. Determine the transform impedance of the network shown in fig

Gl-LE Ca=3F

. L
1 R,
o




5 Find the driving point impedance of the network shown in fig.

A

3H

"
el Fyp |
b_[_” i
5F

. Determine the conditions under which the input impedance of the network shown in fig will be equal to B

32
Eiﬂ—.‘r Zl <>R

&  Draw the wransform network corresponding to that shown in fig, assuming all initial conditions to be zero. Also draw the

simplifiad transform network obtained by combination of various impedances and admittances and there from obtain 1{5).

1

A series RLC circuit has for its driving point admittance pole-zero diagrams are shown in fig. find the values of R 1, C.




10, The Laplace transform of a voltage vit) is V(sk=4(s+10s+21s+3). Draw poles and zeros of this function and determine vit)
using pole-zero plot.

11, The transform voltage Vis) of a network is given by Vis) =48/(5+2H5 +25+2) plot its pole-zero diagram and hence obtain
vith.

12 An RC circoit is shown in fig with B=32 and C=1/12F. Draw the pole-zero plot for ZiSi=V(SVI(5)

£

UNIT-V

JNTU SYLLABUS: Network Parameters-1
Two port network parameters — 2, Y, ABCD and hybrid parameters and their relations.




1. ia) Determine the y-parameters of the network shown in figure.

4L
s> A,

{by The Z-parameters of a two port network are Z.11=15, 222=24 Z12=721=6.
Determine
i. ABCD parameters and
ii. Equivalemt T network. [B48] February2008 sat-1

2 (2) Deermine the ABCD parameters of the network shown in figure a
r

W e
i % g i
Wy arL i v,
N )

() Determine the A BCD parameters of the network shown in figure. [6+10]

Zh

in
._-_W . W .

in

é
0L s GIL

February2{008 set-2, June-2009 set- 1 A prilfmay- 07 set? Angfsept-06 set-12
3 (2 InaT network shown in figure a, Z1 =21 0°,22= 5 L-90°, Z3= 3L 90F, find the Z-parameters,

+ I .. T4

2 )

W v

L l

(b} Z-parameters for a two port network are given as Z11=25, Z12=721=20, Z22=50. Find the equivalent T-network. [3+8]
June2009 sa1-2, Angfsept-07 set-1.3, AprilMay-07 sat-3

4 Deaterming the Z-parameters of the network shown in figure, [8] May/june-06 setl




Wy 40 1
% S

Two identical sections of the network shown in fig are connecied in parallel. Obtain the Y-parameters of the resulting
network and verify the result by direct calculation. [6+10] Aug/sepl-08 sat-1

wh

. Find the Y-parameters of the network shown in fig.[6] April/may-07 set-1,4

L 100m L
o
i — W ;
200 v
Voo 1Sl Py
7. Find the Y-parameters of the network shown in fig.[16] Aug/sept-06 s21-3, May/june- 06 sei-4

I

1 3L 1
+ = ' T
3 3L v,
_ )

%  Determine the ABCD parameters of the network shown in figure. [6]

Aprilimay- 07 set-2, Aug/sept-06 set-1,2

I T

TR il 2
Fe—f'f'l.ﬁ A —
¥y 4ﬂ% sn% 1.1';
4 }

9. Find the h-parameters of the network shown in fig.[8] Aug/sept-08 set-2

. I] 1001 1000 ]2 !
'F_:’_-W AN ¢ T
Wy ]DDJ—L% o0 % W

Il t i 'l:zl

10. For the h-parameters equivalent network shown in fig find the voltage gain load resistance is By [10]
Aug/fsepi-07 setd, Aug/sepi-06 set-4.2




I 1000 I
1 2
+

+
T h22 1
W F.L N
1 z
h12v2 hllll l

11. The Y-parameters of the network ar Y;=0.6 mho, Yz=1.2mho, Y:=-0.3mho.

i) Determine the ABCD parameters
i) Equivalent IT network [ 8] May/June-06 set-1
12, For the two pon network shown in fig, the currents 11 and 12 ame entering at pontl and pon2 respectively. Find the

Y, ZABCD parameters for the n'w. also find its aguivalent IT network. [ 16]
Aug/sep-03 sel-4

1 2
— L A
W, TR0 PORT MR L
-— L - =

UNIT-VI NETWORK PARAMETERS-I1

Cascade networks, concept of transformed network- 2 pont network parameters using transformed variables.

1. Find the transformed ABCD parameters of the network as shown in fig.[8] Aug/sept-08 set-2

-1 o]
| || f 2
7 [ 1
1F 1F
¥ 1oL W
I \| 1
I r ')l:.:

2. Find the transformed Z-parameters for the w'w shown in fig.[16] May/june-08 set-3
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3. Explain the concept of transformed network?

4. Compute the transformed 7 and Y —parameters for the circuit shown in fig.[8]

1B
J— \’jz
L
*LJ'j v,
|l ‘\L’ 11

Aug/sept-08 set-3

5. Find the transformed 7 parameters for the circuit shown in fig.[8]  Jupe-2009 set-3

ido0m

6. Find the transformed Z parameters for the circoit shown in fig. [8]  June-2009 sat-4

+ I £z e

W

V

7. Find the Z-parameters in the circuit of Fig
L

va -1
I&mc.'_}'

28 I:

i

8 Find the Y-parameters in the circuit of Fig.
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Given 1 % _I1b and Vs % Ve find the T-parameters of the resulting two-port network.

10. Find the T- and Z-parameters of the network in Fig. The impedances of capacitors are given. Use the cascade connection

rule.
I, 16 14 10 1,
= NA—r— "\ A 1* 0
v, - ;1,|. s -jﬂT v,
o . ! O

11. Find the Z-parametars of the two-port circuit of Fig.

12. Find the Z-parametars of the two-port circuit of Fig.

UNIT-VII FILTERS-1
JNTU Syllabus

\Low pass, high pass, hand pass, band elimination, prototype filter design




1. Designa low pass T and II section filters having a design impedance R,=600¢ and cut-off frequency =2000Hz

Design a proto type section of band pass filter having cut-off frequencies of 1| KHz and, 5 KHz and a design impedance of
6008,

Design a proto type section of band pass filter having cut-off frequencies of 12KHz and, 16 KHz and a design impedance of
600

=]

i

4. A constant K low pass filter is designed to cut-off at a frequency of 1000Hz and the resistance of the load circuit is 300,
Calculate the values of the coresponding components required.

5. Design a constant k low pass filter IT and T sections at a frequency of SKHz and a design impedance of 10002 Calculai the
attenuation constant at a frequency of 6kHz and phase shift of 1kHz.

6. The elements of a T section of a constant K low pass filter ar as shown
Inductance=50m H each And Capacitance=0.01pF. calculate the cut-off frequency, pass band and the nominal impedance.

7. The elements of a T section of a constant K low pass filter are as shown
Inductance=50m H sach And Capacitance=0.01pF. calculate the cut-off frequency and characteristic impedances at a
frequency of 1KHz and SKHz. Also find the attenuation and phase shift at 1 kHz and 5 kHz

& Design a constant k-high pass filier to have a cut-off frequency of 2 KHz and a design impedance of 1002

0. Design a band pass flter with cut off frequencies of 2000Hz and 5000Hz and a design impedance of 300Q.

10. Design a constant k high pass filier to cut off at 10KHz and design impedance of 600€.

11. Design a k low pass filter to cut off at 2500Hz and design impedance of 7002,

12, Design a constant k filter toeliminate band of frequencies lying between 2000Hz and S000Hz with a design impedance of
6005,

UNIT-VIII

JNTU Syllabus

UNIT-VIII Fourier analysis of A.C circuits. The Fourier theorem, consideration of symmetry, exponential form of
Founer series, line spectra and phase spectra, Fourier integrals and Fourier transforms, properties of Fourier transforms

1. Find the Fourier series for the wave form shown in fig. the wave form is continuous for Oeat<2TT and given by
fit=( 12 T)at, with discontinuous at @i=n2TL\

am

2 Find the exponential Fourier series for the waveform shown in fig. using the coefficients of this exponential serizs obtain &,
and by, of the trigonometric series.




T

3. Find the trigonometric Fourier series for the square wave shown in fig and plot the line spectrum.

Nre--

4, Find the trigonometric Fourier series for the triangular wave shown in fig. and plot the spactrum.

W

-1 o] @ 3101

5. Find the trigonometric Fourier series for the saw tooth wave shown in fig. and plot the spectrum.

—HI/I—Vm

6. Find the trigonometric Fourier series for the wave shown in fig. and plot the spectrum?

W

¥

7. Find the exponential Fourier series for the waveform shown in fig and plot the spectrum?




ST - -

& Find the exponential Fourier serigs for the half wave mctifier in the interval Dcdot<IT, £it) =V sinat. And from IT to 21T,
fit=0.

9, Fand the exponential Fourier series for the wavaform shown and plot the spectrum.

“Zn r:'//11 T

10, What are the propenias of Fourier serias?

11. A pure inductance of 0.01H has an applied current of triangular wave form shown in fig. where g=500rad/szc. obtain the
exponential Fourier series for the curmrent and find the series expression for the voltage across the inductance V.

JAN

TN

12. Find the Fourier transform of the square pulse
x([?:{ 1I|:|r_qu:'I'
0 otherwise
13. Find the spactrum of ™ U (tie™ ui-tp,a = 0, shown in Fig.

an




Unit-wise Quiz Questions and long answer questions

TRANSIENT ANALYSIS
Q1) Capacitor acts like for the a.c_signal in the steady state
a) open biclosed c) not open not close dnone. Ans: (c)

Q72) Double energy transient are produced mn circuits consisting of
a) two or more resistors b) resistance and inductance c) resistance and capacitance d) resistance inductance and

capacitance Ans(d)
Q3)The transient current in a loss free L-C circuat when excited from an ac source 1s a fan ———- -5ine wave
a) over damped b) under damped c) un damped d) cotically damped Ans @
Q4)The Transient current in an R-L-C circuit 1s oscillatory when
a) R=0 b) R=2WL/C ¢) R=2VL/C d) R=2L/C Ans: (©)
Q5) Which of the following does not have the same units as the others? The symbols have their usual
meamngs

a)L/R b)RC ) ViLC d)1/vLC Ans:(cd)

Q6) A DC voltage source 1s connected across a series RLC circuit, under steady state conditions, the apphed
DC voltage drops entirely across the

a) R only b) L only c) C only d) R & L combmations Ans: {c)

Q7) Consider a DC voltage source connected to a series RC circuit. When the steady state reaches, the ratio of
energy stored in the capacitor to the total energy supplied by the voltage source 1s equal to

a) 0.362 b) 0.500 c) 0.632 d) 1.00 Ans: (b)
Q8) For a second order system, damping ratio & is 0=5<11, then the roots of the characteristic polynomial are
a) real but not equal  b) real and equal c) complex conjugates d) imaginary Ans: ©
Q9) The response of an LCR circuit to a step input 1s
If the T F has
a) over damped 1) poles on —ve real axis
b) critically damped 2) poles on imaginary axis
c) oscillatory 3) multiple poles on +ve real axis
4) poles on +ve real axis
abe 5) multiple poles on -ve real axis
a) 125
b) 152
c) 345 Ans (b)
d) 154

Q10) A rectangular voltage pulse of magnitude V and duration T 1s applied to a series combination of R and C.
The max voltage developed across the capacitor is

a) V(1-e 755 b) VI/RC AV d) ve TBC Ans: ( a)
Q11) An ideal voltage source will charge an ideal capacitor
a) in infinite time b) exponentially c) mstantaneously d) none Ans: (c)

Q12) Energy stored in a capacitor over a cycle, when excited by an a_c source 1s
a) same as that due to a dc source of equivalent magnitude b) half of that due to a dc source of equivalent

magnitude c) zero d) none Ans ©
Q13) Two coils having equal resistance but different inductances are connected in series. The time constant of

a) Sum of the time constants of the individual coils b) Average of the time constants of the individual coils

c) Geometric mean of the time constants of the individual coils d) Product of the time constants of the
individual coils

Q14) An imnductor at t=0 with mitial current I; acts as

a) Short b) open c) current source d) voltage source Ans ©

Q15) An inductor L carries steady state current I, suddenly at time =0 the inductor 1s removed from circuit
and connected to a resistor R The current through the inductor at time t 15 equal

a) Le™T b) L (1-e™5) ¢) L™t d) L (1-e™h) Ans: (a)
Q16) Transient current in a circuit results from




a) voltage applied to the circuit b) impedance of the circuit ) changes in the stored energy in inductors
and capacitors d) resistance of the circmt Ans: ©

Q17) A two terminal black box contains one of the RLC elements. The black box 1s connected to a 220 volts ac
supply. The current through the source 1s I. When a capacitance of 0.1 F is inserted i series between the source
and the box, the current through the source is 21. The element s Ans: (b)

a) aresistance b) an inductance ¢) a capacitance of 0.5 F  d) not identifiable on the basis of the given data
Q18) A two termunal black box contains a single element which can be R L.C or M. As soon as the box 1s
connected to a dc voltage source, a finite non-zero current 1s observed to flow through the element. The element
is a/an

a) Resistance b) inductance c) capacitance d) Mutual inductance Ans: (b)
Q19) If an RL circuit having angle o 1s switched in when the applied sinusoidal voltage wave 1s passing
through an angle & there will be no switching transient 1f

a) 8-0=0 b) 6+e=0 c) B-p=90 d) 6+p=90 Ans (a)

Q20) The correct sequence of the time constants of the circuit shown in the increasing order is

L

2 3) 4)
R L R Y
] Y R T

a)1-2-3-4 b)4-1-2-3 ¢)4-3-1-2 d)4-3-2-1 Ans:(c)
Q21) In a circuit the voltage across an element is v(t) = 10 (t-0.01) & '%*V_ The circuit is
a) Un damped b) under damped  ¢) critically damped  d) Over damped Ans:(c)

Q22) A unit step voltage 1s applied at +=0 to a series RL circuit with zero mnitial conditions

a) It 15 possible for the cumrent to be oscillatory b) The voltage across the resistor at =0+ 15 zero c) The energy
stored in the inductor in the steady state is zero d) The resistor current eventually falls to zero  Ans: (b)
Q23) A 1 pF capacitor charged through a 2 kO resistor by a 10V dec source. The imitial growth of capacitor
voltage will be at the rate

a) 3.16 Vims b) 5.0 Vims c) 6.32 Vims d) 10.0 V/ims Ans:(b)

Q24) A senies R — C — L circuit 1s diiven by an ac voltage source. Then the voltage across the following
elements or the pair of elements cannot exceed the applied voltage

a)C b)L R d)Rand L Ans:(c)

Q25) A series R-C circuit has a capacitor with an initial voltage of 11 V. A 15 V dc source 1s now connected
across the R-C circuit. The imitial rate of change of capacitor voltage can be

a) 15X 0368 /RC b) 15X 0.632/RC c) 11/RC d)4/RC Ans:(d)
Q26) For the compensated attenuator of fig below, the impulse response under the condition R;C=R.C; 1s
Kl
+ = +
|1
1
C
Vi) Co L Ra Volt)

a) Ro/(Ry+Ro)[1-€%" ]“':t) b) Ro/(Ry+R2)8(t) ) sz(Rl"'Rz)“(t) d) sz(Rl"'Rz)[l'E{R “1] 8(t) Ans: (b)
Q27) What is v, (o+ )?




Q28) The switch K opened at t = 0 after the network has attained a steady state with the switch closed.

Find ws(0+ ) across the switch ?

K L
1 = RV
+ Vs -
AT I § R2
R1 C
T
a) VR / Ry b)V ¢)V+VR1/R2 d)o
Q29) The switch SPST 1s closed at t=0, find d/dt 11(0+)
QT
SPST
A
Zotm
oo = 20ctm % § ctm
i
3
L T wF
a)0 b) 40 c) 50 d) none.
Q30) SPST 15 closed at t=0.What is the time constant of the circuit?
AN 00
Zohm SPET

A" T AL
05ohm
tohm
e l g Tohm
L — o0& _|_

Ans: (a)

Ans: (c)




a) 26/ 7 b) 7/26 c) 7113 d) none Ans: (b)
Q31) Given Ve (0-)=10V, Ve (0-)=5V find Ve () =7

c1 Vel

B AAGE —I——

a)7sv b) 0 c) 20/3v d) none Ans: (c)

TOBE A TEACHER MEANS TOUCH HEART RATHER THAN HEAD

Q32) Given Initial charge i Cp = 500uC. In the steady state find charge in 1 uf capacitor?

Laf =2 J-qu
|

a) 50 uC b) 100pC c) 250uC d)none Ans: (a)
Q33) Switch K is opened at t=0, find I (0+) =7
A

X

== (P o o

a) SA )0 c)2A d) none Ans: (a)
Q34) Whatisi () =? GivenL; = 1H _.R=100 .1, = 2H. i3 (0)=2A




L1 L2§ R

a)23 A b)o c) 43 d) 1A Ans: (a)
Q35) What is V1 (0 +), when switch K 15 closed at =07

Ok

= 10UF

a) 2V b) -2 c)0 d) none Ans (b)
Q36) An impulse current 25 (t) A, with t i second, 15 made to flow through an mmtially relaxed 3F capacitor.
The capacitor voltage at T=0+1s

ajov. b2V )23V d) zero Ans:(c)

Q37) The circmt of fig 15 inthially relaxed. At =0+,
If 1

P .

1100V lhé 10|1m§
_ v

| |

a)v=0V b)1=0A c)v=100V dj1=w Ans:(c)
Q38) The tume constant of the circuit shown in fig 1s

i
T

a)C(R;+Ra) DbICEjR:/(Ri+R:) c) UK, dj LR, Ans:(b)
Q39) Tfis(f) is SA at =0, find iy(t) for all t when i(f) = 10 &2




1:(t) é 1h

a)e™ b)20e™  c)30e™ d)6.67e-1.67 Ans:(d)
Q40) The swiich in the circuit of fig. has been closed for a long time. It 1s opened at t =0 .

1 T+
IACD l<'t=|:: 10 v
1 F| |-

a) v(0+) =1V, 1{(0+)=0A b) w(i+) =0V, 1(0+)=0A c) v(i+) =0V, 1(0+)=1A

div () =1V, 1(0+)=1A Ans(c)
Q41) In the circuat shown, the switch 1s moved from position A to B at time t = 0. The current 1 through the
inductor satisfies the following conditions 1. 1(0)=-8A 2 di/dt (t=0) =3A /s 3 1i(w)=-4A the value of R
18

LA WL

My

El
|
| 1l
3n§ 2H LA
A AAE e
1 —_— .
l B
R 2
i
E2

a)050hm b)20chm c)40chm d): 1 Ans(a)
Q42) In the circuit shown above, the switch 1s closed at t = 0. The current through the capacitor will decrease
exponentially with a time constant
>< fakm
1

T e 1.
T

a)05s byls c)2s d)10s Ans(b)
Q43) In the network shown, the switch 1s opened at t = 0. Prior to that, network was in the steady- state, Vs (t)

at t=01s
x
Fohm 1
M 11
\—A 10chm




+Vslt)-

a)0 b)sV ) 10V d) 15V Ans:(b)
Q44) For the cirenit shown different time constants are given. What are the charging and discharging times
respectively? 1)05x10°S  2)2x10°S  3)025x10°S 4)10°S

=0
Thohm )(
== 0.5uF Tvhm
-1 d
d)2.4

a)1.2 b) 2.3 c) 1.3 2, Ans:(c)

Q45) The voltage across R after =0 and t=10sec_ will be

)<J\;\n}\r_f ”{].Suf‘
100V J:

T

a) 100V, 632V b) 0V, 632V  ¢)100V.368V  d) OV, 26.8V Ans:(c)
Q46) In the network shown in the fig. The switch K 15 closed at t = 0 with the capacitor uncharged.
di (1)
The value for att=0" will be .
dt

a) 100 amp /sec  b)-100 amp/sec  ¢) 1000 amp/sec  d) —1000 amp/sec Ans:(b)

Q47) The differential equation for the current 1(t) 1n the circuit of fig 1s

- (ﬂ P aal
2 ohm 2H
Sint 1F
d di di di T
a)2 +2 +i(t)=sint b) +32 +21(t) = cost




& di d*i di
H()=cost d) + 2
dt’ dt dr* dt

+2i(f) =sint Ans: ()

Q48) For the circuit shown the switch 1s in position 1 for a long time and thrown to position 2 at t=0. At =0""

the current1; 1s
1 e
|
2 R
v 4 E L
T 1(t) 1(t
Ca

WAL

_|_
a)-V2ZR b)-VER c)-V/MR d)zero Ans: (a)
Q49) The switch K is closed at t=0. Find 1{ 0+) =7
1(0-)=2A4  10)=1A
K
—_— —
o ot =-){]<
9D
a) 0.5A b) 1A c) ZA d) none Ans: (a)
Q50) What 15 1(t) when the source is & (t) =7
7 i
5() - c = R §
a) (VRS () +%u() bBWRBM+Cs () ) (IR)SE®)—-1/(R*C)e™ "d)none Ans: (b)
TWO PORT NETWORKS

1.  Asthe poles of a network shift away from the asxis, the response

a) Remain constant b) becomes less oscillating c) becomes more oscillating d) none of these  Ans: (b)
2. The response of a network 1s decided by the location of

a)Its zeros  b) Itspoles ¢ both zetos & poles d) neither zeros nor poles. Ans (c)




3. The pole-zero configuration of a network function 1s shown. The magmiude of the transfer function will

7

P9 X O o -
201 ‘ 1 2 o
a) Decrease with frequency b) mncrease with frequency
c) Imtially increase and then decreases with frequency d) Be mndependent of frequency Ans: (d)
4  The condition that a 2- port network 1s reciprocal can be expressed in terms of its ABCD
Parameters as Ans: AD-BC=1

5. Two identical 2- port networks with Y parameters Yy =-Y ;3 =-Y3; = ¥2; = 1S are connected i cascade.
The over all ¥ parameters will satisfy the condition
E)Yn:ls b}Yu:—L'QS C}Ym:—zs d} Y22=15 AﬂSZ( :I'
6. For two two — port networks connected in parallel, the overall y-matrix is
a) Always the sum of the individual v- matrixes
b) The sum of the mndividual y- matrixes if certain conditions are satisfied.
c) Always the inverse of the sum of the individual z- matrixes.
d) The inverse of the sum of the individual z- matnixes if certain conditions are satisfied. Ansi( )
7. Gwven; =2V, +Vy; and L =V;+V; the Z-parameters are grven by
a)2.1.1.1 b)1.-1.-1.2 c)1,1.1.2 d)2.-1,1.1 Ans: (b)
8 The short — circuit admittance matrix of a two-port network 1s as shown

0 -1/2
Y2 0

The two-port network 1s Ans:(a)
a) Non reciprocal & passive b) Non-reciprocal & active c) Reciprocal & passive  d) reciprocal & active.
9. If the two port network 1s reciprocal, then
) Zp/ Yn=2Zn —ZnZn b)Z=1Yxn c)hp=-hy d) AD-BC=0 Ans: (c)
10. Two networks are cascaded through an ideal buffer. If tr; & tr; are the nise times of two networks, then the
over all nise time of the two networks together will be
AVmm bV’ )  m+imd) (m+im )2 Ans: (b)

11. The open- circuit transfer impedance Z;; of the two-port network 1s
7a /




) (Z-2,) 2 b(Z-Z:) /2 ) (Za+Z) /2 d) Z, +Z, Ans:(b)

12. Two networks are cascaded through an 1deal buffer. If td; & td; are the delay times of two networks, then
the over all delay time of the two networks together will be

A Vtdytdy b)YV (d #d) o) td; +td; d) (td; +td; )/ 2

Ans: (c)
13. The two- port network shown in fig. described by the relationships Vi =kVzand T =kl: its mput impedance
—_— —
+ i + L
Vi N Vo R
a)R b)-R o) kR dK'R Ans:(b)
14. A 2- port network is shown in fig. The parameter hy; for this network can be given by
I — I
. AN————AAN .
+ R R +
Vi Va
- R _
a)—% b)+12 Q)32 d)+3/2

Ans-(a)
15. For the circuit shown identify the correct statement ;where Za is Z-parameters of top circuit , Zb1s Z
parameters of bottom circuit and Z 1s the Z parameters of complete circuat

1 ohm 1 ohm
M Ay
1 ohm
APty i APy
R R
1 ohm:
Mty My
1 ohm 1 ohm

a) forany value of Ry and Ry Z=Z,+ Z, b) If Ry=Ry; =0thenonly Z=Z,+ 7,
c) IfR; and R; 1s equal to 1 ohm then only Z = Z, + Z, d) None

16. A two port network 15 reciprocal, if and only if

a)Zn=Zp b)BC-AD=-1 ¢)Yp=-Yn dihp=hy

Ans: (b)
Ans;(b)

17. The two — port network shown in the fig. 1s characterized by the impedance parameters Z11, Z12 Z5) and Zas.

For the equivalent Thevenin’s source looking to the left of port 2, the V and Zrwill be respectively
1
—

Zg

N
Vg
1 0¥

)




Zy Zy3

a}‘u" = —'Vgi_ 21’221_2—213 b}‘u‘r e 1.-'.5; ZT=ZE—ZD
Znt Zg n +Zg
InVs Z1z Im Zn Vg Z12 2y
QVe= - Fg=Zm+ 0 d)Vr=__ 000 [ Zr=Zp-_  Ans(d)
In+Zg In+Z, IntZ; In+Zg

18. In respect of the 2-port network shown in the fig. The admittance parameters are: Y13 = 8mho, Y1, =Y =
6 mho and Y3; = 6 mho. The values of ¥, ¥y Y, (in units of mho) will be respectively

Yc
Ya Yb
a)26and—6 b)26and0 c¢)20andé d)2,6and8 Ansic)
19. If the transmission parameters of the network are A =C =1, B=2 and D = 3, then the value of Zy 1s
Il E I‘j —
A
2 —port network 10 ohm
a) 12/13 0 B1312 0 30 Jd40 Ans:(a)
20. The open circuit impedance matrix of the 2 port network shown in fig; 1s
N I I, .
— YA —
Vl 1 Dhﬂlg > 311 ‘-"g

201 -2 -8 0 1 2 -1




22. The network in the box shown displays the following z parameters: z;;= 50 ohms, z;; = -100 ohms, z;; =
500 ohms, and zz; = 2.5 k ohms. Determune the circuit required for z; to msure maximum power transfer.
Assume f=60Hz

1002 132 6mH

1

1520 Z:

]

a)2.8k ohms. 26.5 uF in series. b)2.6 k ohms. 26.5 uF in senies ¢)2.8 k ohms, 265 mH in senies
d)2.6 k ohms, 265 mH in senes Ans: @
23. Find Z;; of the circuit shown in the fig: with dot sign at the top side of two windings
R

1 ] ] .2

1 . lnl . .2

| ideal |
aAR/n°—1 b)oR/n’-1 c)o'Rin’—=1  d)none Ans:(c)
24. Find Y11 of the fig; shown. 10 ochms
AR
- Sobm | Moohm 2
10 ohm
1 r

a)0.2mohs b)Smhos c)infinite d) none Ans (a)




25. Find Yy of the fig; shown

5 5
A
1 10
|
1! 10 -
‘\N\:S Wy
a) 25/ 3 mhos b) 50/ 3 mhos c)oee  d)6/25 mhos Ans: (c)
26. Find Yy for the fig shown?
R R
S AAY My
1 . o |_I
R R
1! 2!
a)4R/3  b)3/4R ¢)4/3R d)3R/ 4 Ans: (©)
27. The h parameters of the circuit shown n fig are
[] . - IQ
— + I‘H\Qf:lms +—
Vi 20 ohms 3 Vs
a) b) o) d) Ans: (d)
01 01 01 -1 30 20 10 1
-01 03 1 005 20 20 -1 0.05
=

28 Two transmission lines are conmected in cascade whose ABCD parameters are

A B = 1 10730 & Ay Bp = 1 0
cC;, D 0 1 L Cs 0.025.7-30 1
Find resultant ABCD parameters

29. For the circuit shown, if the input impedance Z; at port 1 1s given by Z; = K; (S+2)/ (5+5) then the I'P
impedance Z; at port 2 will be

a) K (S+3)/(5+5) b) K, (5+2)/(5+3) c)K:S5/(8+3) d)K; S/(5+2) Ans: ()
30. A passive 2-port network 1s in a steady state. Compared to 1ts input, the steady state output can never offer
a) Higher voltage b) lower impedance

c) Greater power d) better regulation Ans: (c)




31. Admittance matrix of the circuit as shown 1s

" A 12
. — vl -—
V1 1Dchm 10chm V2
32. Find A B.C.D parameters of No
N — Zohm L
My -y = *
V1 No 1ohm V2
1

Vi = 30 23 V3
I 13 10 I

33. A symmetrical lattice network has a resistance R; in the series arm and a resistance R; in the cross arm. Its

Z 12 parameter 15
a)(Ri+R:)2 B)(R:-Ry)/2 Ri-FRp)/2 d)2(Ri-Ry) Ans:()

4 2
34. The Y parameters of a four — terminal block EL‘[E :|A single element of 1 ohm 1s connected across
1 1

as shown 1n the given fig. The new Y parameters will be

R e A ) A
a) |0 2 by| 2 2 c) |1 1 d| 1 1 Ans( )

35. The impedance parameters Z,; and Z;; of the two-port network in fig: are
2 ohm 2 ochm 3 ohm

A A i My




NETWORK FUNCTIONS
The necessary and sufficient condition for a rational function of T (s) to be driving point impedance of an
RC network 1s that all poles and zeros should be
a. Simple and lie on the negative axis in the s- plane b) Complex and lie in the left half of the s- plane
b. Complex and lie in the right half of the s- plane d) Simple and lie on the +ve real axis of the s-plane
Ans: (a)

1

2. For an RC driving — point impedance function the poles and zeros
a) Should alternate on real axis b) should altemate only on the real axis

c) Should alternate on the imaginary axis  d) can lie any where on the left half plane

3. The transfer function of a passive circuit has its poles and zeros on
a) Left and nght halves respectively of the s-plane b) right and left halves respectively of the s-plane
c) Right half of the s — plane d) left half of the s- plane. Ans:(a)

4. A realizable driving point function N(s) can be expressed as follows:
N (8) =KS / (8*+wg’) + F; (5) where F, (S) has no poles at S=+ jwy. The constant K
a) may be complex b) must be real and positive ¢) must be real and negative d) must be real but may be
positive of negative. Ans:()

5. An LC one-port has two inductances and a capacitance connected in such a manner that the two
inductances cannot be combined into one. The driving point impedance will have

a) a zero at 5=0 as well as at s=o0 b)apole ats=D aswell asats == c) a zero at 5= 0 and a pole at s=w
Ans:()

d) apoleats=0andazeroats=o
6. An RLC network has two poles which are complex conjugates and very close to the jw-axis_ Tts transient
response
a)is critically damped b) 15 over damped c) 1s under damped d) cannot be determined from this data Ans: ()
7. An mmpedance function Z (s) 1s such that Re(Z (jw)) < 0 for w; =<=w < w; and Re(Z (jw)) = 0 for 0= w =

wrandw, <w<ow It
a) can be realized by an RC network  b) can be realized by an RL network c) can be realized by an R1L.C

network d) cannot be realized by an RLC network.
8. A gyrator has an admittance matrix= 0 G . It synthesizes an inductor at its input terminals when

Ans: (b)

-G 0
terminated by a capacitor C. The magmitude of mductor 1s
a) G'C b) C/G* c) GYIC d) 2CG Ans:(b)
9. Match List —I with List —IT and select the comrect answer using the codes given below the Lists:

List-I List-IT
A Intemal impedance of an ideal current source 1s 1. Forced response of the circuat
B. For attenuated natural oscillations, the poles of the 2. Namrazl response of the circuit

Transfer function must lie on the E
C. A battery with an e. m_ f E and intemal resistance 3.

R delivers current to a load Rr. Maximum power 4R
transferred 1s E?
D. The roots of the charactenistic equation given 4.

2R
5. Left hand part of the complex frequency plan




6. Right hand part of the complex frequency plan

7. Infimte
8. Zero
Codes:
A B C D A B C D
a7 6 3 1 e 5 4 2
08 6 4 1 d 7 5 3 2 Ans:(d)
10. The driving — point impedance Z(S) of a network has the pole-zero locations as shown in fig;if
Z(0)=3 then T Z(s)is Im s-plane
X 1 () denotes zero
X denotes pole
— r
-3 -1 Re
X ¥

a)3(S +3) /(8% +2s +3) b)2(S+3)/(S228+2) ¢)3(5-3)/(S*—28-2) d) 2(S-3)/(S*- 2s-3)Ans: ()

11. Match list-1 with list-2 and select the correct answer using the codes given below the lists:
List-1
A) Brdge T- network B) Twin T- network  C) Lattice network D) Ladder network

]
List-2 1) 2) [—
] .
L L
3) o S 4) ] ]
I o oy N e o L LI_I
L L L L ]
ABCD [’]
e 2.4.3.1
) 4213
g) 4.2.1,3
h) 2.4.1.3 Ans:(d)
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edition
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Reference Text Books

1.Network Analysis By M.E Van Valkenberg
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