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Computer Methods & Power Systems

Subject Code:56011 L:4 T/P/D:0 Credits:4
Int. Marks:25 Ext. Marks:75 Total Marks:100
UNIT I: Power System Network Matrices-1

Graph Theory: Definitions, Bus Incidence Matrix, Y bus formation by Direct and Singular
Transformation Methods, Numerical Problems.

UNIT II: Power System Network Matrices-2

Formation of ZBus: Partial network, Algorithm for the Modification of Z Bus Matrix for addition element
for the following cases: Addition of element from a new bus to reference, Addition of element from a
new bus to an old bus, Addition of element between an old bus to reference and Addition of element
between two old busses (Derivations and Numerical Problems).- Modification of ZBus for the changes
in network ( Problems )

UNIT III: Power flow Studies-1

Necessity of Power Flow Studies — Data for Power Flow Studies — Derivation of Static load flow
equations - Load flow solutions using Gauss Seidel Method: Acceleration Factor, Load flow solution
with and without P-V buses, Algorithm and Flowchart. Numerical Load flow Solution for Simple Power
Systems (Max. 3-Buses): Determination of Bus Voltages, Injected Active and Reactive Powers (Sample
One Iteration only) and finding Line Flows/Losses for the given Bus Voltages.

UNIT IV: Power flow Studies-2

Newton Raphson Method in Rectangular and Polar Co-Ordinates Form: Load Flow Solution with or
without PV Busses- Derivation of Jacobian Elements, Algorithm and Flowchart. Decoupled and Fast
Decoupled Methods. - Comparison of Different Methods — DC load Flow

UNIT V: Short Circuit Analysis-1

Per-Unit System of Representation. Per-Unit equivalent reactance network of a three phase Power
System, Numerical Problems.

Symmetrical fault Analysis: Short Circuit Current and MVA Calculations, Fault levels, Application of
Series Reactors, Numerical Problems.

UNIT VI: Short Circuit Analysis-2

Symmetrical Component Theory: Symmetrical Component Transformation, Positive, Negative and Zero
sequence components: Voltages, Currents and Impedances.

Sequence Networks: Positive, Negative and Zero sequence Networks, Numerical Problems.
Unsymmetrical Fault Analysis: LG, LL, LLG faults with and without fault impedance, Numerical
Problems.

UNIT VII: Power System Steady State Stability Analysis

Elementary concepts of Steady State, Dynamic and Transient Stabilities. Description of: Steady State
Stability Power Limit, Transfer Reactance, Synchronizing Power Coefficient, Power Angle Curve and
Determination of Steady State Stability and Methods to improve steady state stability.

UNIT VIII: Power System Transient State Stability Analysis

Derivation of Swing Equation. Determination of Transient Stability by Equal Area Criterion, Application
of Equal Area Criterion, Critical Clearing Angle Calculation.- Solution of Swing Equation: Point-by-Point



Method. Methods to improve Stability - Application of Auto Reclosing and Fast Operating Circuit
Breakers.

TEXT BOOKS:

1. power system Analysis Operation and control, Abhijit Chakrabarthi , Sunita Haldar, 3 ed , PHI,2010.
2. Modern Power system Analysis — by I.J.Nagrath & D.P.Kothari: Tata McGraw-Hill Publishing
company, 2nd edition.

REFERENCE BOOKS:

1. Computer Techniques in Power System Analysis by M.A.Pai, TMH Publications

2. Power System Analysis by Grainger and Stevenson, Tata McGraw Hill.

3. Computer techniques and models in power systems, By K.Uma rao, I.K.International
4. Power System Analysis by Hadi Saadat - TMH Edition.



1. Vision of the department

Vision and Mission of the institute
The Mission of the institute
Our mission is to become a high quality premier educational institution, to create technocrats, by
ensuring excellence, through enriched knowledge, creativity and self development.

The Vision of the institute
Geethanjali visualizes dissemination of knowledge and skills to students, who would eventually
contribute to the well being of the people of the nation and global community.

DEPARTMENT OF EEE

Department of Electronics and Electronics Engineering is established in the year 2006 to
meet the requirements of the Electrical and Electronic industries such as Vijay electrical, BHEL,
BEL and society after the consultation with various stakeholders.

Vision of EEE
To provide excellent Electrical and electronics education by building strong teaching and research
environment



2. Mission of the department

Mission of EEE

i) To offer high quality graduate program in Electrical and Electronics education and to prepare students
for professional career or higher studies.

ii) The department promotes excellence in teaching, research, collaborative activities and positive
contributions to society

3. PEOs and Pos

Program Educational Objectives

Program Educational Objectives of the UG Electrical and Electronics Engineering are:

PEO 1. Graduates will excel in professional career and/or higher education by acquiring
knowledge in Mathematics, Science, Engineering principles and Computational skills.

PEO 2. Graduates will analyze real life problems, design Electrical systems appropriate to the
requirement that are technically sound, economically feasible and socially acceptable.

PEO 3.Graduates will exhibit professionalism, ethical attitude, communication skills, team
work in their profession, adapt to current trends by engaging in lifelong learning and
participate in Research & Development.

Programme Outcomes

The Program Outcomes of UG in Electrical and Electronics Engineering are as follows:

PO 1. An ability to apply the knowledge of Mathematics, Science and Engineering in Electrical
and Electronics Engineering.

PO 2. An ability to design and conduct experiments pertaining to Electrical and Electronics
Engineering.

PO 3. An ability to function in multidisciplinary teams

PO 4. An ability to simulate and determine the parameters such as nominal voltage, current, power
and associated attributes.

PO 5. An ability to identify, formulate and solve problems in the areas of Electrical and
Electronics Engineering.

PO 6. An ability to use appropriate network theorems to solve electrical engineering problems.

PO 7. An ability to communicate effectively.

PO 8. An ability to visualize the impact of electrical engineering solutions in global, economic and
societal context.

PO 9. Recognition of the need and an ability to engage in life-long learning.

PO 10 An ability to understand contemporary issues related to alternate energy sources.



PO 11 An ability to use the techniques, skills and modern engineering tools necessary for
Electrical Engineering Practice.

PO 12 An ability to simulate and determine the parameters like voltage profile and current ratings
of transmission lines in Power Systems.

PO 13 An ability to understand and determine the performance of electrical machines namely
speed, torgue, efficiency etc.

PO 14 An ability to apply electrical engineering and management principles to Power Projects

6. Course objectives and outcomes:

Objectives:

e This course introduces formation of Z bus of a transmission line, power
flow studies by various methods.

e It also deals with short circuit analysis and analysis of power system
for steady state and transient stability.

Outcomes

On successful completion of this subject, students will be able to:

1. Demonstrate an understanding of the nature of the modern power system, including the
behaviour of the constituent components and sub-systems

2. Describe the construction, operation and equivalent circuit of three-phase transformers

3. Apply load flow analysis to an electrical power network and interpret the results of the analysis
4. Analyse a network under both balanced and unbalanced fault conditions and interpret the results
5. Demonstrate an understanding of the role of protection in modern power systems and to
describe the operation of a range of protection schemes

6. Design a protection system for an item of electrical plant

7. Demonstrate an awareness of the methods used for voltage regulation in electrical power
networks

8. Analyse the transient stability of a single machine/infinite bus system using both analytical and
time simulation methods

9. Demonstrate an understanding of the factors which determine transient stability in both single
machine and multi-machine systems

10. Describe the role of insulation co-ordination in the design and operation of power networks,
including the role of circuit breakers

11. Demonstrate the ability to conduct experiments in the Electrical Engineering Laboratory in
accordance with Health and Safety Regulations and to record, interpret and report on the
experimental results



7. Brief notes on the importance of the course and how
it fit into the curriculum

The course is about the basic concept, mathematical model, analysis method of power systems. It covers
power flow calculation, fault calculation, stability analysis, control and protection for power systems. Matrix
analysis of power systems networks and methods of solution. Load flow and short circuit analysis. Economic
operation of power systems. Transient stability analysis.

8. Prerequisites
Principles of Electric Circuits, Electrical Machine

9. Instructional Learning Outcomes:

Outcomes

1. Demonstrate an understanding of the nature of the modern power system, including the
behaviour of the constituent components and sub-systems

2. Describe the construction, operation and equivalent circuit of three-phase transformers

3. Apply load flow analysis to an electrical power network and interpret the results of the analysis
4. Analyse a network under both balanced and unbalanced fault conditions and interpret the results
5. Demonstrate an understanding of the role of protection in modern power systems and to
describe the operation of a range of protection schemes

6. Design a protection system for an item of electrical plant

7. Demonstrate an awareness of the methods used for voltage regulation in electrical power
networks

8. Analyse the transient stability of a single machine/infinite bus system using both analytical and
time simulation methods

9. Demonstrate an understanding of the factors which determine transient stability in both single
machine and multi-machine systems

10. Describe the role of insulation co-ordination in the design and operation of power networks,
including the role of circuit breakers

11. Demonstrate the ability to conduct experiments in the Electrical Engineering Laboratory in
accordance with Health and Safety Regulations and to record, interpret and report on the
experimental results



10.Course mapping with PEOs and Pos:

a) an ability to apply the knowledge of Mathematics, science and engineering in
Electronics and communications

b) an ability to Design & Conduct Experiments, as well as analyze & Interpret Data

c) an ability to design a system, component, or process to meet desired needs with
in realistic constraints such as economic, environmental, social, political, ethical,
health and safety, manufacturability, and sustainability

d) an ability to function on multidisciplinary teams

e) an ability to Identify, Formulate & Solve problems in the area of Electronics and
Communications Engineering

2|2 2|2

f) an understanding of professional and ethical responsibility

g) an ability to communicate effectively

h) the broad education necessary to understand the impact of engineering solutions
in a global, economic, environmental, and societal context

i) a recognition of the need for, and an ability to engage in life-long learning

j) a knowledge of contemporary issues

k) an ability to use the techniques, skills, and modern engineering tools necessary
for engineering practice

Relationship of the course to the program educational objectives :

1. Domain knowledge: Graduates will be able to synthesize mathematics, science,
engineering fundamentals, laboratory and work-based experiences to formulate
and solve engineering problems in Electronics and Communication engineering
domains and shall have proficiency in Computer-based engineering and the use
of computational tools.

2. Professional Employment: Graduates will succeed in entry-level engineering
positions within the core Electronics and Communication Engineering,




computational or manufacturing firms in regional, national, or international
industries and with government agencies.

Higher Degrees: Graduates will succeed in the pursuit of advanced degrees in
Engineering or other fields where a solid foundation in mathematics, science,
and engineering fundamentals is required.

Engineering citizenship: Graduates will be prepared to communicate and work
effectively on team based engineering projects and will practice the ethics of
their profession consistent with a sense of social responsibility.

Lifelong Learning: Graduates will recognize the importance of, and have the
skills for, continued independent learning to become experts in their chosen
fields and to broaden their professional knowledge.

Research and Development: To undertake Research and Development works in
the areas of Electronics and Communication fields.

11. Class Time Table:

12. Individual Time Table




13. Lecture schedule with methodology being used/adopted

Unit wise Summary

S. | Unit | Date Topic Regular/ LCD/ Remark
NO | No Additional | OHP/BB
UNIT-1 Power System Network Matrices-1
1 |1 Graph Theory,Definitions
2 Bus Incidence Matrix
3 Y bus Formation by Direct Method OHP
4 Y bus Formation by Singular Transformation
Method
5 Numerical Problems
UNIT-2 Power System Network Matrices-2
6 |2 Formation of Z Bus
7 Algorithm for the Modification of Z Bus LCD
Addition of Element from a New Bus to
Reference
8 Addition of -Element from a New Bus to an
Old Bus
9 Addition of Element between Old Buses to
Reference
10 Addition of Element between Two Old Buses
11 Modifications of Z Bus for the changes in
Network
Numerical Problems
12 TOTURIAL 1
13 TOTURIAL 2
14 ASSGHNMENT FOR 1 & 2 UNITS
UNIT-3 Power flow Studies-1
15 |3 Necessity of Power Flow Studies
16 Data for Power Flow Studies
17 Derivation of Static Load Flow Equations
18 Gauss Seidel Method, Acceleration Factor OHP
19 Load Flow Solution with and without P-V OHP
Buses
20 Algorithm and Flowchart. Numerical Load OHP
flow Solution for Simple Power Systems (Max.
3-Buses):
21 Determination of Bus Voltages
22 Injected Active and Reactive Powers
23 Finding Live Flows / Losses foe given Bus

Voltages.

Unit-4 Power flow Studies-2




24 Newton Raphson Method in Rectangular and OHP
Polar Co-Ordinates Form:

25 Load Flow Solution with or without PV OHP
Busses-

26 Derivation of Jacobean Elements Algorithm
and Flowchart.

27 Decoupled and Fast Decoupled Methods

28 Comparison of Different Methods — DC load
Flow

29 TOTURIAL 1

30 TOTURIAL 2

31 ASSGHNMENT FOR 1 & 2 UNITS

32 | Mid revision
Unit-5 Short Circuit Analysis-1

33 Per-Unit System of Representation.

34 Per-Unit equivalent reactance network of a
three phase Power System, Numerical
Problems.

35 Symmetrical fault Analysis: Short Circuit
Current and MVA Calculations

36 Fault levels, Application of Series Reactors

37 Numerical Problems.
UNIT-6 Short Circuit Analysis-2

38 Symmetrical Component Theory: Symmetrical
Component ransformation

39 Positive, Negative and Zero sequence
components: Voltages, Currents and
Impedances.

40 Sequence Networks: Positive, Negative and
Zero sequence Networks, Numerical Problems.

41 Unsymmetrical Fault Analysis: LG, LL, LLG
faults with and without fault impedance

42 Numerical Problems.

43 TOTURIAL 1

44 TOTURIAL 2

45 ASSGHNMENT FOR 1 & 2 UNITS
UNIT-7 Power System Steady State Stability
Analysis

46 Elementary concepts of Steady State, Dynamic
and Transient Stabilities.

47 Description of: Steady State Stability Power OHP




Limit, Transfer Reactance

48 Synchronizing Power Coefficient, Power Angle
Curve
49 Determination of Steady State Stability and
Methods to improve steady state stability.
Unit-8 Power System Transient State
Stability Analysis
50 |8 Derivation of Swing Equation. Determination OHP
of Transient Stability by Equal Area Criterion
51 Application of Equal Area Criterion, Critical
Clearing Angle Calculation
52 Solution of Swing Equation: Point-by-Point
Method.
53 Methods to improve Stability
54 Application of Auto Reclosing and Fast OHP
Operating Circuit Breakers.
55 TOTURIAL 1
56 TOTURIAL 2
57 ASSGHNMENT FOR 1 & 2 UNITS
58 Il Mid revision
Al additional
A2 additional
Revision for previsious JNTU papers
Revision for previsious JNTU papers
Revision for previsious JNTU papers
Revision for previsious JNTU papers
TOTAL NUMBER OF
PERIODS=64+2(ADDITIONAL)
MICRO PLAN
S. | Unit | Date Topic Regular/ LCD/ Remark
NO | No Additional | OHP/BB
UNIT-1 Power System Network Matrices-1
1 1 Graph Theory,Definitions
2 Bus Incidence Matrix
3 Y bus Formation by Direct Method OHP
4 Y bus Formation by Singular Transformation

Method




5 Numerical Problems
UNIT-2 Power System Network Matrices-2
6 Formation of Z Bus
7 Algorithm for the Modification of Z Bus LCD
Addition of Element from a New Bus to
Reference
8 Addition of -Element from a New Bus to an
Old Bus
9 Addition of Element between Old Buses to
Reference
10 Addition of Element between Two Old Buses
11 Modifications of Z Bus for the changes in
Network
Numerical Problems
12 TOTURIAL 1
13 TOTURIAL 2
14 ASSGHNMENT FOR 1 & 2 UNITS
UNIT-3 Power flow Studies-1
15 Necessity of Power Flow Studies
16 Data for Power Flow Studies
17 Derivation of Static Load Flow Equations
18 Gauss Seidel Method, Acceleration Factor OHP
19 Load Flow Solution with and without P-V OHP
Buses
20 Algorithm and Flowchart. Numerical Load OHP
flow Solution for Simple Power Systems (Max.
3-Buses):
21 Determination of Bus Voltages
22 Injected Active and Reactive Powers
23 Finding Live Flows / Losses foe given Bus
Voltages.
Unit-4 Power flow Studies-2
24 Newton Raphson Method in Rectangular and OHP
Polar Co-Ordinates Form:
25 Load Flow Solution with or without PV OHP
Busses-
26 Derivation of Jacobean Elements Algorithm
and Flowchart.
27 Decoupled and Fast Decoupled Methods
28 Comparison of Different Methods — DC load
Flow
29 TOTURIAL 1
30 TOTURIAL 2
31 ASSGHNMENT FOR 1 & 2 UNITS
32 | Mid revision




Unit-5 Short Circuit Analysis-1

33

Per-Unit System of Representation.

34

Per-Unit equivalent reactance network of a
three phase Power System, Numerical
Problems.

35 Symmetrical fault Analysis: Short Circuit
Current and MVA Calculations

36 Fault levels, Application of Series Reactors

37 Numerical Problems.
UNIT-6 Short Circuit Analysis-2

38 Symmetrical Component Theory: Symmetrical

Component ransformation

39 Positive, Negative and Zero sequence
components: Voltages, Currents and
Impedances.

40 Sequence Networks: Positive, Negative and
Zero sequence Networks, Numerical Problems.

41 Unsymmetrical Fault Analysis: LG, LL, LLG
faults with and without fault impedance

42 Numerical Problems.

43 TOTURIAL 1

44 TOTURIAL 2

45 ASSGHNMENT FOR 1 & 2 UNITS
UNIT-7 Power System Steady State Stability
Analysis

46 Elementary concepts of Steady State, Dynamic
and Transient Stabilities.

47 Description of: Steady State Stability Power OHP
Limit, Transfer Reactance

48 Synchronizing Power Coefficient, Power Angle
Curve

49 Determination of Steady State Stability and
Methods to improve steady state stability.
Unit-8 Power System Transient State
Stability Analysis

50 Derivation of Swing Equation. Determination OHP

of Transient Stability by Equal Area Criterion

51 Application of Equal Area Criterion, Critical
Clearing Angle Calculation
52 Solution of Swing Equation: Point-by-Point

Method.




53

Methods to improve Stability

54

Application of Auto Reclosing and Fast
Operating Circuit Breakers.

OHP

55

TOTURIAL 1

56

TOTURIAL 2

57

ASSGHNMENT FOR 1 & 2 UNITS

58

11 Mid revision

Al

additional

A2

additional

Revision for previsious JNTU papers

Revision for previsious JNTU papers

Revision for previsious JNTU papers

Revision for previsious JNTU papers

TOTAL NUMBER OF
PERIODS=64+2(ADDITIONAL)

13.8. Subject Contents
13.8. 1. Synopsis page for each period(62 pages)
13.8.2. Detailed Lecture notes containing:

1.ppts
2.0hp slides
3.subjective type questions(approximately 5 t0 8 in no)
4.0bjective type questions(approximately 20 to 30 in no)
5.Any simulations

13.9. Course Review ( By the concerned Faculty):

(DAiIms
(I1) Sample check
(111) End of the course rreport by the concerned faculty

GUIDELINES:

Distribution of periods :

No. of classes required to cover JINTU syllalbus

No. of classes required to cover Additional topics

No. of classes required to cover Assignment tests (for every 1 units 1 test)

No. of classes required to cover tutorials

No. of classes required to cover Mid tests

No of classes required to solve University

Question papers

Total periods

Total periods




14. Detailed notes:

CHAPTER- 1-A

INCIDENCE AND NETWORK MATRICES

[CONTENTS: Definitions of important terms, Incidence matrices: Element node
incidence matrix and Bus incidence matrix, Primitive networks and matrices,
Performance of primitive networks, Frames of reference.  Singular
transformation analvsis, Formation of bus sdmittance matrix, examples)

INTRODUCTION

The solution of a given linear network problem requires the formation of a set of
cquations  describing the response of the network. The mathematical model so
derived, must describe the characteristics of the individual network components, as
well as the relationship which governs the interconnection of the individual
components. In the bus frame of reference the variables are the node voliages amd

node currents.

The independent variables in any reference frame can be either currents or voltages.
Correspondingly. the coefficient matrix relating the dependent variables and the
independent variables will be either an impedance or admittance matrix. The
formulation of the appropriate relationships between the independent and dependent
variables is an integral part of a digital computer program for the solution of power
system problems. The formulation of the network equations in different frames of
reference requires the knowledge of graph theory. Elementary graph theory concepts
are presented here, followed by development of network equations in the bus frame of

reference.

ELEMENTARY LINEAR GRAFH THEORY: IMPORTANT TERMS

The geometrical interconnection of the various branches of a network is called the
topology of the network. The connection of the network topology, shown by replacing
all its elements by lines is called a graph. A linear graph consists of a set of objects
called nodes and another set called elements such that each element is identified with
an ordered pair of nodes. An element is defined as any line segment of the graph
irrespective of the characteristics of the components involved. A graph in which a






direction is assigned to cach element is called an oriented graph or a directed graph.
It is to be noted that the directions of currents in various clements arce arbitrarily
assigned and the nctwork ecquations are derived. consistent with the assigned
directions. Elements are indicated by numbers and the nodes by encircled numbers.
The ground node is taken as the reference node. In electric networks the convention
is to use associated directions for the voltage drops. This means the voltage drop in a
branch is taken to be in the direction of the current through the branch. Hence. we
need not mark the voltage polaritics in the oriented graph.

Connected Graph : This is a graph where at least one path (disregarding orientation)
exists between any two nodes of the graph. A representative power system and its
oriented graph are as shown in Fig 1, with:

¢ = number of clements = 6 | = number of links = e-b =3
n = number of nodes =4 Tree=T(1,2.3) and
b = number of branches =n-1=3 Co-tree = T(4.5.6)

Sub-graph : sG is a sub-graph of G if the following conditions arc satisfied:

® sGis itself a graph

* Every node of sG is also a node of G

® Every branch of sG is a branch of G
For cg., sG(1,2.3), sG(1.4.6), sG(2). sG(4.5.6). sG(3.4),.. arc all valid sub-graphs of
the oriented graph of Fig. lc.

Loop : A sub-graph L of a graph G is a loop if
® L isaconnected sub-graph of G
® Preciscely two and not more/less than two branches are incident on each node
inL
In Fig lc, the set|1.2.4) forms a loop. while the set{1,2,3.4.5} is not a valid, although
the set(1.3.4.5) is a valid loop. The KVL (Kirchhoff's Voltage Law) for the loop is
stated as follows: In any lumped network, the algebraic sum of the branch voltages

around any of the loops is zero.
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Cutset : It is a set of branches of a connected graph G which satisfies the following
conditions :
® The removal of all branches of the cutset causes the remaining graph to have
two separate unconnected sub-graphs.
® The removal of all but onc of the branches of the set, leaves the remaining
graph connected.

Referring to Fig lc. the set {3,5.6] constitutes a cutset since removal of them isolates
node 3 from rest of the network, thus dividing the graph into two unconnected sub-
graphs. However, the sct{2,4.6) is not a valid cutset! The KCL (Kirchhoff's Current
Law) for the cutset is stated as follows: In any lumped network, the algebraic sum of

all the branch currents traversing through the given cutset branches is zero.

Tree: It is a connected sub-graph containing all the nodes of the graph G. but without
any closed paths (loops). There is one and only one path between every pair of nodes
in a tree. The elements of the tree are called twigs or branches. In a graph with n
nodes,

The number of branches: b=n-| n
For the graph of Fig lc. some of the possible trees could be T(1.2.3). T(1.4.,6).
T(2,4.5). T(2.5.6), ctc.

Co-Tree : The sct of branches of the original graph G, not included in the tree is
called the co-tree. The co-tree could be connected or non-connected. closed or open.
The branches of the co-tree are called finks. By convention, the tree clements are
shown as solid lines while the co-tree elements are shown by dotted lines as shown in
Fig.1c for tree T(1,2.3). With ¢ as the total number of elements,

The number of links: /[=¢-b=c-n+1 2)
For the graph of Fig lc. the co-tree graphs corresponding to the various tree graphs
arc as shown in the table below:
Tree T(1.23) | T(14.6) | T(24.5) | T(2.5.6)
Co-Tree | T(45.6) | T(23.5) | T(1.3.6) | T(1.3.4)




Basic loops: When a link is added to a tree it forms a closed path or a loop. Addition
of cach subsequent link forms the corresponding loop. A loop containing only one
link and remaining branches is called a basic loop or a_fundamental loop. These loops
are defined for a particular tree. Since cach link is associated with a basic loop, the
number of basic loops is equal to the number of links.

Basic cut-sets: Cut-scts which contain only one branch and remaining links are called
basic cutsets or fundamental cut-sets. The basic cut-sets are defined for a particular
tree. Since cach branch is associated with a basic cut-set, the number of basic cut-scts
is equal to the number of branches.

on Basics of LG Theory:
Example-1: Obtain the oriented graph for the system shown in Fig. EI. Select any

Sfour possible trees. For a selected tree show the basic loops and basic cut-sets.
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Fig. E1b. Oriented Graph of Fig. Ela.



For the system given, the oriented graph is as shown in figure El1b. some of the valid
Tree graphs could be T(1.2.3.4), T(3.4.8.9), T(1.2.5.6). T(4.5.6.7). etc. The basic cut-
sets (A,B.C.D) and basic loops (E.F.G,H.1) corresponding to the oriented graph of
Fig.Ela and tree, T(1.2.3.4) arc as shown in Figure Elc and Fig.E1d respectively.

Fig. E1d. Basic Loops of Fig. Ela.



INCIDENCE MATRICES

Element-node incidence matrix: A

The incidence of branches to nodes in a connected graph is given by the clement-node
incidence matrix. A . An element ajjof A is defined as under:
ajj = 1 if the branch-i is incident to and oriented away from the node-j.
= -1 if the branch-i is incident to and oriented towards the node-j.
= 0 if the branch-i is not at all incident on the node-j.

Thus the dimension of A is cxn. where ¢ is the number of clements and n is the
number of nodes in the network. For example, consider again the sample system with
its oriented graph as in fig. lc. the corresponding clement-node incidence matrix, is
obtained as under:

| LS. 0 1 2 3
Elements
1 | -1
2 1 -1
A= 3 1 -1
M T T
5 1 -1
6 1 -1

It is to be noted that the first column and first row are not part of the actual matrix and
they only indicate the clement number node number respectively as shown. Further,
the sum of every row is found to be equal to zero always. Hence, the rank of the

matrix is less than n. Thus in general. the matrix A satisfics the identity:

Z ag=0 Vi=12,....e 3
i=!



Bus incidence matrix: A

By sclecting any one of the nodes of the connected graph as the reference node, the
corresponding column is deleted from A to obtain the bus incidence matrix, A. The
dimensions of A arc ex(n-/) and the rank is n-/. In the above example, sclecting
node-0 as reference node, the matrix A is obtained by deleting the column
corresponding to node-0, as under:

Buses
Ele;l; 1 2 3
1 -1
2 -1 A, | Branches
A= 3 -1 =
4 | -1
5 1 -1 A Links
6 1 -1

It may be observed that for a sclected tree, say, T(1.2.3), the bus incidence matrix can
be so arranged that the branch elements occupy the top portion of the A-matrix
followed by the link clements. Then, the matrix-A can be partitioned into two sub
matrices Ap and A} as shown, where.

(i) Ay is of dimension (bxb) corresponding to the branches and
(ii) A1 is of dimension (Ixb) corresponding to links.

A is a rectangular matrix, hence it is singular. Ap is a non-singular square matrix of
dimension-b. Since A gives the incidence of various elements on the nodes with their
direction of incidence, the KCL for the nodes can be written as

ATi =0 4
where ATis the transpose of matrix A and 7 is the vector of branch currents. Similarly
for the branch voltages we can write,

F=AE,_ (5)



Exam on_HBus Incidence Matrix:
Example-2: For the sample network-oriented graph shown in Fig. E2, by selecting a

tree, Ti1,2,3.4), obtain the incidence matrices A and A. Also show the partitioned

form af the matrix-A.
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Fig. EX. Sample Metwork-Oriented Graph

nodes
fevm O 1 2 3 47
1 1 -1 0o 0 o
2 1 0 -1 0 O
.-i = EIfmfl'lTE : ! o . Y -l
4 00 0 -1 1
5 00 1 -1 O
6 0 1 -1 0 O
|7 0 0 1 0 -1
buses
(el 1 2 3 4]
1 -1 0 0 O
g 0 -1 0 0
A = Elements : o ol
4 (1] -1 1
5 o 1 -1 o
[ 1 -1 O O
| 7 o 1 0 -1




Corresponding to the Tree, T(1.2,3.4), matrix-A can be partitioned into two sub-

matrices as under:

buses
b\b 1 2 3 4
1 = 0 0 @
Ag=branches| 2 0 -1 0 0
3 o o0 0 -1

buses
I\b 1 2 3 4
0 - 0
6 1 -1 0 0O
7 01 0 -1

Example-3: For the sample-system shown in Fig. E3, obtain an oriented graph. By
selecting a tree, T/1,2.3,4), obtain the incidence matrices A and A . Also show the

partitioned form of the matrix-A.

|

=1

Fig. E3a. Sample Example network

Consider the oriented graph of the given system as shown in figure E3b. below.



Fig. E3b. Oriented Graph of system of Fig-E3a.

Corresponding to the oriented graph above and a Tree, Til1.2.3.4). the incidence

matrices | and A can be obtained as follows:

Y ) a4
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-1 1 -1 1
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Corresponding to the Tree, Ti1.2.3.4), matrix-A can be partitioned imo two sub-

matrices as under:
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PRIMITIVE NETWORKS

5o far, the matrices of the interconnected network have been defined. These matrices
contain complete information about the network connectivity, the orientation of
current, the loops and cutsets. However, these mairices contain no information on the
nature of the clements which form the interconnected network. The complete
behaviour of the network can be obtained from the knowledge of the behaviour of the
individual elements which make the network. along with the incidence matrices. An
element in an electrical network is completely characterized by the relstionship

between the current through the element and the voltage across it

Gieneral representation of a network element: In general, a network element may
contain active or passive components. Figure 2 represents the alternative impedance

and admittance forms of representation of a general network component.

E, P 4
4
Vm=E-Ey
Zpy
.
Ipq Ipq
E q ¥ E;, q

Fig.2 Representation of a primitive network element
(a) Impedance form (b)) Admittance form



The network performance can be represented by using cither the impedance or the
admittance form of representation. With respect to the element, p-gq. let,

vpy = voltage across the element p-g,

£pg = source voltage in series with the element pg,

ipg= current through the element p-g,

jipg= source current in shunt with the element p-q,

#pq= self impedance of the element p-q  and

¥pg= self admittance of the element p-qg.

Performance equation: Each clement p-q has two variables, vy and iy, The
performance of the given element p-g can be expressed by the performance equations
as under:

Vpy + Epg = Epgipy (im its impedance form)

ipg + dpg =¥V {in its admittance form) i)

Thus the parallel source current jpg in admittance form can be related to the series
source voltage, epg in impedance form as per the identity:
Jpa =~ YpqCpq Ll
A set of non-connected elements of a given system is defined as a primitive Network
and an clement in it is a fundamental clement that is not connected to any other
element. In the equations above, if the variables and parameters are replaced by the
corresponding vectors and matrices, referring to the complete set of elements present
in a given system. then, we get the performance equations of the primitive network in
the form as under:

v+e=[z]i
i+j =[v¥]lv 8)
Primitive network matrices:

A diagonal element in the matrices. [z] or [v] is the self impedance zpgpg or self
admittance, ¥pgpg. An off-diagonal element is the mutual impedance. #p» or mutual
admittance, Ypgs, the value present as a mutual coupling between the elements p-g
and r-s. The primitive network admittance matrix, [¥] can be obtained also by



inverting the primitive impedance matrix, [z]. Further, if there are no mutually
coupled elements in the given system, then both the matrices, [z] and [v] are diagonal.

In such cases, the self impedances are just equal to the reciprocal of the corresponding

values of self admittances, and vice-versa.

Examples on Primitive Networks:

Example-d: Given thal the self impedances of the elemenis af a network referred by
the bux incidence matrix given below are egual to: £)=F:=02, Z;=0.25, Z;=F;=0.1
and Fe=04 units, draw the corresponding oriented graph, and find the primitive

network matrices. Neglect mutual values between the elements.

=1 o

L] -1 L]
A= L] 1] -1

1 -1 L]

L] 1 -1

1 1] -1

Solution:

The clement node incidence matrix, A can be obtained from the given A matrix, by

pre-augmenting to it an extra column comesponding to the reference node, as under.

1 -1 0
1 o -1

A=| 1 0 il -1
o 1 -1 1
o 1 1 -1
0 1 0 -1




Bascd on the conventional definitions of the clements of A . the oriented graph can be
formed as under:

G oWl
X o ‘-‘.‘
// “"\_
" e
: + 2 5 b
e -~ / @
4 3

=@

Fig. E4 Oriented Graph

Thus the primitive network matrices are square, symmetric and diagonal matrices of
order e=no. of elements = 6. They are obtained as follows.

o2 | o | 0 0
0 0.2 0 0
zZl=| © 0 | o028 0 0
0 0 0.1 0 0
0 0 0.1 0
0 0 0 0.4
And
so| o o 0
0 5.0 0 0
[y] =| 0 0 4.0 0 0
0 0 10 0 0
0 0 10 0
0 0 0 0 25




Example-5: Consider three passive elements whose data is given in Table ES below.

Form the primitive network impedance matrix.

Table ES
Self impedance (zp;po) Mutual impedance, (Zpg.r)
Element
= ! Bus-code, Impedance in Bus-code, Impedance in
(p-q) pa. (r-s) pu.
1 1-2 j0.452
2 2-3 j 0387 1-2 j0.165
3 1-3 j0.619 1-2 j0234
Solution:
1-2 2-3 1-3
1-2 | joas2 | jO.165 | j0.234
[z]= 2-3j0.165 joast | o
1-3170.24 0 jo.619
Note:

® The size of [z] is e X ¢, where e= number of clements.

®  The diagonal elements are the self impedances of the elements

® The off-diagonal clements are mutual impedances between the corresponding
clements.

® Matrices [z] and [y] are inter-invertible.



FORMATION OF Ygus AND Zgus

The bus admittance matrix, Ygys plays a very important role in computer aided power
system analysis. It can be formed in practice by cither of the methods as under:

Rule of Inspection

Singular Transformation
Non-Singular Transformation
Zgus Building Algorithms, ctc.

Pl o e

The performance equations of a given power system can be considered in three
different frames of reference as discussed below:

Frames of Reference:

Bus Frame of Reference: There are b independent equations (b = no. of buses) relating
the bus vectors of currents and voltages through the bus impedance matrix and bus
admittance matrix:

Epus = Zgus Isus

Isus = Ysus Esus 9

Branch Frame of Reference: There are b independent equations (b = no. of branches
of a selected Tree sub-graph of the system Graph) relating the branch vectors of
currents and voltages through the branch impedance matrix and branch admittance
matrix:

Epg = Zgp Iag

Isr = Ysr Ear (10

Loop Frame of Reference: There are b independent equations (b = no. of branches of a
sclected Tree sub-graph of the system Graph) relating the branch vectors of currents
and voltages through the branch impedance matrix and branch admittance matrix:

Eroop = Zyoop lLoop
Ioop = Yroop ELoop (i

Of the various network matrices refered above, the bus admittance matrix ( Ygus) and
the bus impedance matrix {Zg;s) are determined for a given power system by the rule
of inspection as explained next.

Rule of Inspection

Consider the 3-node admittance network as shown in figure5. Using the basic branch
relation: T = (YV), for all the clemental currents and applying Kirchhoff's Current
Law principle at the nodal points, we get the relations as under:

Atnode 11 I =YiVi+ Yi(V-Vi) + Ys (V| - V2)
Atnode 2: Iy =YV + Ys(V-Vi) + Y (V2 - V)
Atnode 3: 0=Y3(Vi-VI) + Y4Vi+ Ys5(Vi-Va) (12)
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Fig. 3 Example System for finding Ygus

These are the performance equations of the given network in admittance form and
they can be represented in matrix form as:

Ii| = [(Yi+Y3+4Ys) -Ys -Y3 Vi
Il = -Yg (Yr+Ys+Ys) -Ys Va2
0| = -Ys3 -Ys (Yi+Y:+Ys) Vi (13

In other words. the relation of cquation (9) can be represented in the form
Isus = Yaus Esus (14)

Where, Yaus is the bus admittance matrix, Igus & Egus are the bus current and bus
voltage vectors respectively.

By observing the clements of the bus admittance matrix, Ygys of equation (13). it is
observed that the matrix clements can as well be obtained by a simple inspection of
the given system diagram:

Diagonal elements: A diagonal clement (Yg) of the bus admittance matrix,
Ygus. is cqual to the sum total of the admittance values of all the elements
incident at the bus/node i,

Off Diagonal elements: An off-diagonal element (Yj;) of the bus admittance
matrix, Ygus, is cqual to the negative of the admittance value of the
connecting clement present between the buses I and j, if any.

This is the principle of the rule of inspection. Thus the algorithmic equations for the
rule of inspection are obtained as:

Ya=2Zy (=12 n)
ij= -Yi G=12...c0 n) (15)



For 1= 1.2.....n. n= no. of buses of the given system. yjj is the admittance of clement
connected between buses i and j and ys is the admittance of element connected
between bus i and ground (reference bus).

Bus impedance matrix

In cases where, the bus impedance matrix is also required. it cannot be formed by
direct inspection of the given system diagram. However. the bus admittance matrix
determined by the rule of inspection following the steps explained above. can be
inverted to obtain the bus impedance matrix. since the two matrices arc inter-
invertible.

Note: It is to be noted that the rule of inspection can be applicd only to those power
systems that do not have any mutually coupled elements.

Exam on Rule of Inspection:

Example 6: Obtain the bus admittance matrix for the admittance network shown
aside by the rule of inspection

® v @

16 -8 -4 ¥ 7 & &(‘At 3
Yps=j[-8 24 -8 P % arves
£ B AArAS.)

Example 7: Obtain Ygus for the impedance network shown aside by the rule of
inspection. Also, determine Ygus for the reduced network after eliminating the eligible
unwanted node. Draw the resulting reduced system diagram.

(‘..\Q_' __ff :ﬂ}-\}o-L @ \
&) L - 1)
as 5.4 aasns Hlae B e
Yeus=j| 5 -16 10 gurs 9 = b3
4 1014 (Q\LLM&.\'\L
um‘u\mm‘)

Zoys = Yaus '




Yaus™™ = Ya-YeYp'Ye

Ygus =j|-8.66 7.86
7.86 -8.66

SINGULAR TRANSFORMATIONS

The primitive network matrices are the most basic matrices and depend purcly on the
impedance or admittance of the individual clements. However, they do not contain
any information about the behaviour of the interconnected network variables. Hence,
it is necessary to transform the primitive matrices into more meaningful matrices

which can relate variables of the interconnected network.

Bus admittance matrix, Yy and Bus impedance matrix, Zgis

In the bus frame of reference, the performance of the interconnected network is
described by n independent nodal equations, where # is the total number of buses
(n+1 nodes are present, out of which one of them is designated as the reference node),
For example a 5-bus system will have 5 external buses and 1 ground/ ref. bus). The



performance equation relating the bus voltages to bus current injections in bus frame
of reference in admittance form is given by
Isus = Yaus Esus an
Where Egys = vector of bus voltages measured with respect to reference bus
Isus = Vector of currents injected into the bus
Ygus = bus admittance matrix
The performance equation of the primitive network in admittance form is given by
i+j=lylv

Pre-multiplying by A (transpose of A), we obtain

AlisA'j=Allylv (18)
However. as per equation (4),

Ali=0.
since it indicates a vector whose clements are the algebraic sum of clement currents
incident at a bus, which by Kirchhoff's law is zero. Similardy, A' j gives the algebraic
sum of all source currents incident at each bus and this is nothing but the total current
injected at the bus. Hence,

A'j =1lsus (19)
Thus from (18) we have,  Igps= A'[y] v (20)
However, from (5). we have

v=A Epus

And hence substituting in (20) we get,

Igus= A'ly] A Egus @n
Comparing (21) with (17) we obtain,
Yeus=A'[yl A (22)

The bus incidence matrix is rectangular and hence singular. Hence, (22) gives a
singular transformation of the primitive admittance matrix [y]. The bus impedance
matrix is given by ,

Zpus = Yaus' 23)
Note: This transformation can be derived using the concept of power invariance,
however, since the transformations are based purely on KCL and KVL. the

transformation will obviously be power invariant.



Examples on Transformation:

Example 8: For the network of Fig ES, form the primitive matrices [z] & [v] and

obtain the bus admittance matrix by singular transformation. Choose a Tree T(1,2,3).

The data is given in Table ES.

® ;
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Fig E8 System for Example-8

Table ES: Data for Example-8

Elements Self impedance | Mutual impedance
1 0.6 =
2 j05 j 0.1(with clement 1)
3 j0.5 =
4 j04 3 0.2 (with clement 1)
s j02 -

Solution:

The bus incidence matrix is formed taking node 1 as the reference bus.



The primitive incidence matrix is given by,

joé  jol 00 j02 00
Jjol 05 00 00 0.0
[zl=| 0 0O jO5 00 00
J0 00 00 jo4 00
oo 00 00 00 o2

The primitive admittance matrix [y] = [z|'I and given by,

— fRLOB33  jD4167 (X} J1.0417 0.0
J0.4167  — j20833 00 0 — f02083 00

[vi=| o0 0.0 - j20 0.0 0.0
FlO417 - jD2083 00 — 30208 00
00 0.0 o 0.0 —j5n

The: bus admittance matrix by singular transformation is obtained as

- jR.0208 02083 5.0
Yas=A'[y] A = | jO2083 - j4.0833 20
js.o j2n - 10

[ f0.2713  jO.264 02290
Zous =Ypus' =| j0.1264 03437 01885
| J0.2299 OS5 03609




SUMMARY

The formulation of the mathematical model is the first step in obtaining the solution
of any clectrical network. The independent variables can be cither currents or
voltages. Correspondingly. the clements of the coefficient matrix will be impedances

or admittances.

Network equations can be formulated for solution of the network using graph theory.
independent of the nature of clements. In the graph of a network, the tree-branches
and links arc distinctly identified. The complete information about the interconnection
of the network, with the directions of the currents is contained in the bus incidence

matrix.

The information on the nature of the clements which form the interconnected network
is contained in the primitive impedance matrix. A primitive clement can be
represented in impedance form or admittance form. In the bus frame of reference, the
performance of the interconnected system is described by (n-7) nodal equations,
where n is the number of nodes. The bus admittance matrix and the bus impedance
matrix relate the bus voltages and currents. These matrices can be obtained from the
primitive impedance and admittance matrices.



Chapter-1-B

FORMATION OF BUS IMPEDANCE MATRIX

[CONTENTS: Node elimination by matrix algebra, generalized algorithms for Zgs
building, addition of BRANCH, addition of LINK, special cases of analysis,
remeoval of elements, changing the impedance value of an element, examples)

NODE ELIMINATION BY MATRIX ALGEBRRA

Nodes can be eliminated by the matrix manipulation of the standard node equations.
However, only those nodes at which current does not enter or leave the network can
be considered for such elimination. Such nodes can be eliminated cither in one group

or by taking the eligible nodes one after the other for elimination, as discussed next.

CASE-A: Simultaneous Elimination of Nodes:
Consider the perfformance equation of the given network in bus frame of reference in

admittance form for a n-bus system, given by:
Ipvs = Yypus Epus (L

Where Igus and Egys are n-vectors of injected bus current and bus voltages and Ygyus

is the square, symmctric, cocfficient bus admittance matrix of order n.

MNow. of the n buses present in the svstem, let p buses be considered for node-
elimination so that the reduced system after elimination of p nodes would be retained
with m (= n-p} nodes only. Hence the comesponding performance equation would be

similar to (1) except that the coefficient matrix would be of order m now, ie..
Ipus = Ypus™ - Epus 12)

Where Yaus s the bus admittance matrix of the reduced network and the vectors
Igus and Egus are of order m. It is assumed in (1) that Taus and Egys are obtained with
their elements arranged such that the elements associated with p nodes w0 be
eliminated are in the lower portion of the vectors. Then the elements of Yaus also get

located accordingly so that (1) after matrix partitioning vields,



m  p
Isvsm ™| Ya Y| | Epusm

lnus-p = r|Ye Yp Emrs-p ‘
3
Where the self and mutual values of Y and Yp are those identified only with the
nodes to be retained and removed respectively and Ye=Yg' is composed of only the

corresponding mutual admittance values, that are common to the nodes m and p.

Now, for the p nodes to be climinated, it is necessary that, cach clement of the vector
Igusp should be zero. Thus we have from (3):

Igus.m = Ya Egus.m + Ys Egusyp
Igusp = Yc Egus.m + Yp Egusp =0 )

Solving. Esusp =- Yo' Yc Epvsm ®

Thus, by simplification, we obtain an expression similar to (2) as,
-1
Isus.m = (YA - YsYn Yc} Egusm (6)

Thus by comparing (2) and (6). we get an expression for the new bus admittance

matrix in terms of the sub-matrices of the original bus admittance matrix as:
Yeus™™ ={Ya- YsYp'Yc) ]

This expression enables us to construct the given network with only the necessary
nodes retained and all the unwanted nodes/buses climinated. However, it can be
observed from (7) that the expression involves finding the inverse of the sub-matrix
Yp (of order p). This would be computationally very tedious if p, the nodes to be
climinated is very large, especially for real practical systems. In such cases, it is more
advantageous to eliminate the unwanted nodes from the given network by considering

one node only at a time for elimination. as discussed next.



CASE-B: Separate Elimination of Nodes:

Here again, the system buses arc to be renumbered, if necessary. such that the node to
be removed always happens to be the last numbered one. The sub-matrix Yp then
would be a single element matrix and hence it inverse would be just equal to its own
reciprocal value. Thus the generalized algorithmic equation for finding the elements
of the new bus admittance matrix can be obtained from (6) as,

Yi = Ya,-"" — Yin Yuj/ Yun Vig=12,...... n. (8)

Each clement of the original matrix must therefore be modified as per (7). Further,
this procedure of climinating the last numbered node from the given system of n
nodes is to be iteratively repeated p times, so as to climinate all the unnecessary p
nodes from the original system.

Examples on Node elimination:
Example-1: Obtain Ygys for the impedance network shown below by the rule of

inspection. Also, determine Ygus for the reduced network after eliminating the eligible

unwanted node. Draw the resulting reduced system diagram.
 E 0 L S
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The admittance equivalent network is as follows:




The bus admittance mairix is obtained by Rol as:
98 5 4

Yaus=j| 5 -16 10
4 10-14

The reduced matrix after elimination of node 3 from the given system is determined
as per the equation:

Yous ™" = Ya-Ye¥o Yo

i I 2
Yo ™= 1| -j8.66 j?.8ﬁ|

2| j7.86 | -j8.66 |

Alternatively,

\rij“ - \"ij.u - Yia ¥y Y Yij=12

Yu=Yu-YoYuw/ Yu =-j8.66
Yi=Yn—-YuYiy/ Y =-ji.06
Yir=Yu=Yu-Yo¥Yayns=j7.86

Thus the reduced network can be obtained again by the rule of inspection as shown
be low.

© @
@ L@ s

-Jis~ ¥ =3 Teg
CAdim. w0



Example-2: Obtain Yy for the admittance network shown below by the rule of
inspection. Also, determine Ygus for the reduced network after eliminating the eligible

unwanted node. Draw the resulting reduced system diagram.

E) 4

2
1[50 0 [j20]j10
Yous= 2 0 -j60 0 j72 = YA YB

320 o [-j72] js0 ) (e O

Yous'™ = Ya-YaYp'Yc

n/n ! 2
Yoo'™= 1 [-i32.12 | j10.32

> | j10.32 | -j51.36

Thus the reduced system of two nodes can be drawn by the rule of inspection as
under:



-}\0.32.
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buildi
FORMATION OF BUS IMPEDANCE MATRIX

The bus impedance matrix is the inverse of the bus admittance matrix. An altemative
method is possible, based on an algorithm to form the bus impedance matrix dircctly
from system parameters and the coded bus numbers. The bus impedance matrix is
formed adding onc clement at a time to a partial network of the given system. The
performance equation of the network in bus frame of reference in impedance form

using the currents as independent variables is given in matrix form by

E.= [zt_ ]I-r-. 9
When expanded so as to refer to a n bus system. (9) will be of the form

E=Z,L+Z,1, +..... +Z,.1,.+Z.1
E,=Z, L +Z 1,4 Z L ¥ . +Z 1,

E.=Z 4 Zod, ¥ s $Z 0 4t 2 (10)

Now assume that the bus impedance matrix Zy,, is known for a partial network of m
buses and a known reference bus. Thus. Zies of the partial network is of dimension
mxm. If now a new clement is added between buses p and g we have the following
two possibilities:



(i)

P is an existing bus in the partial network and g is a new bus; in this case
p-g is a branch added to the p-network as shown in Fig 1a, and

both p and g are buses existing in the partial network: in this case p-gisa
link added to the p-network as shown in Fig 1b.

|
o
Partial
Network
P -
q
ZBUS i —T—
m R B
0 [ —C— Ref

Fig 1a. Addition of branch p-q

P B
a !l
Partial
Network
p—
ZBUS q —
m —,
0 | ——E_ Ref

Fig 1b. Addition of link p-q



If the added element ia a branch, p-q. then the new bus impedance matrix would be of
order m+1, and the analysis is confined to finding only the elements of the new row
and column (corresponding to bus-q) introduced into the original matrix.

If the added clement ia a link, p-q, then the new bus impedance matrix will remain
unaltered with regard to its order. However. all the clements of the original matrix arc
updated to take account of the effect of the link added.

ADDITION OF A BRANCH

Consider now the performance equation of the network in impedance form with the
added branch p-q. given by

- -

E, Z, Z, "» z, Zu I
E: Z:n Z:: z:p Zz— z:. l:
EN=1Z,) Z,, o Z, o Z,, Z |1, (1)
El |12 2w = 2y o Za zo |1l
LE., | Za Ze v Zy v L Zo || 1]

It is assumed that the added branch p-g is mutually coupled with some elements of the
partial network and since the network has bilateral passive elements only, we have
Vector ypyris not equal to zero and Zij=Zi Vij-12...mgq (12)

To find Z:
The clements of last row-q and last column-q are determined by injecting a current of
1.0 pu at the bus-i and measuring the voltage of the bus-q with respect to the reference

bus-0, as shown in Fig.2. Since all other bus currents are zero, we have from (11) that

E=2Z41i =27 ¥ k=1 20000 p g (13)
Hence, Eg=75: E=Z .........

Also, E=Ep-vpgisothat Zg =Zgi - vpg Vi=1, 2. i....p...m.7q (14)
To Vpqi

In terms of the primitive admittances and voltages across the elements, the current
through the clements is given by



~

g |_| Yrara Yowrs | Vog
= SEP i 5 (15)
] Yrspg Y | Ve

~

-
oL |
Partial
Network
= Viy R
P - -

ZBUS

Fig.2 Calculation for Z

where i is current through clement p-g
i, is vector of currents through elements of the partial network
v,, is voltage across clement p-g
¥ oo 15 self — admittance of the added clement
¥ u.re i the vector of mutual admittances between the added clements p-g and

clements r-s of the partial network.

¥, is vector of voltage across clements of partial network.

V.. pe I8 transposc of ¥ .
..., is the primitive admittance of partial network.

Since the current in the added branch p-q. is zero, i,, = 0. We thus have from (15),

o=y V. _+¥_ ¥V =0 (16)



Solving, v, =- or
Y po.me
v,..|E -E
anlE-E) -
.\.n.n
Using (13) and (17) in (14), we get
vz, -Z
Z“=Zﬂ+"°'"(" ) i=12...mizq (18)
"'N~N
To find zqq:

The element Zy, can be computed by injecting a current of 1pu at bus-q, I; = 1.0 pu.
As before, we have the relations as under:

Ex=2Zy =7y Vk=12. .i...p,...mq (19)
Hence, Eg=7Zg: Ey=7, : Also. Eg=E; - vy sothat Zg =7, - vy 20)

Since now the current in the added clement is L == =-10,we have from (15)

'n_‘nnn'n"-vun ' = !
oo ¥
. g | ]
Solving, v = l+——-
}N-Fl
FpenlE. —E,)
v :_|+L 21
~N v
“MN

Using (19) and (21) in (20). we get

1+5,.,-2,)
Y e

Special Cases

The following special cases of analysis concerning Zgus building can be considered

with respect to the addition of branch to a p-network.

Case (a): If there is no mutual coupling then elements of ¥, ,, are zero. Further, if p

is the reference node. then E;=0. thus,

Z;i=0 i=12..m:izgq
And Zpy=0.
Hence, from (18) (22) Zy=0 i=12..mizqg
And e =T e v (23)



Case (b): If there is no mutual coupling and if p is not the ref. bus, then, from (18)

and (22), we again have,

(24)

ADDITION OF A LINK

Consider now the performance equation of the network in impedance form with the
added link p-1. (p-1 being a fictitious branch and | being a fictitious node) given by

E, Z, 7z, - zlp - Z, Zlq I,

E, z:l Z, -~ Z:p .z, 2 I:

E' =z, Z, Ly s e Z~ l’ (25)
E, Z, Z_, z, Z_. Z_ 11
| E, | | Z, Z,. Z, Z, Z,)1)

It is assumed that the added branch p-g is mutually coupled with some clements of the
partial network and since the network has bilateral passive elements only. we have
Vector ypyris not equal to zero and Zy=2Z3  Vij-1.2..mlL (26)

To find Zy:

The elements of last row-] and last column-l are determined by injecting a current of
1.0 pu at the bus-i and measuring the voltage of the bus-q with respect to the reference
bus-0, as shown in Fig.3. Further. the current in the added clement is made zero by
connecting a voltage source, ¢ in scries with clement p-q. as shown. Since all other
bus currents are zero, we have from (25) that

Ex=Zul =Z ¥ k=12, ip..m] @n
Hence, ci=E =2 ; E=%i: Ep=Zp .........
Also,  e=Ey-Eg- vy
So that Zs = Zgi - Zgi- Vpg ¥ 1=1.2...0....p...q....m, #] (28)



To find vpg:

In terms of the primitive admittances and voltages across the elements, the curmrent

through the elements is given by

;'Pr . Yotpi  Notee Vo
i T (29)
in- < rEm }r:.u 1';_;
e M—
2
Partial
Network B
Vol
i
ZIEUS

Fig.3 Calculation for Zj
where i, is current through element p-g
i, is vector of currents through elements of the partial network
v, is voltage across element p-g
¥y 15 5elf — admittance of the added element

¥, is the vector of mutual admittances between the added elements p-g and
clements r-5 of the partial network.

¥, is vector of voltage across elements of partial network.

¥ I8 transpose of ¥, .

¥, is the primitive admittance of partial network.



Since the current in the added branch p-l. is zero, i, = 0. We thus have from (29),

iy =Yy iV * V¥ =0 (30)
Y.V,
Solving., v, =——=2=  or
Yotnl
¥..\E —E,
- unlE-E) .
Yolpi
However,

Yoiin = Ve
And

s - 2
Yort = Y (32)

Using (27). (31) and (32) in (28). we get

¥ |ZnZ

ZN=Z~-Z¢+"'"(;- i=12...mizl (33)
5
N~

To find Zy:

The clement Zy can be computed by injecting a current of Ipu at bus-1, I = 1.0 pu. As
before, we have the relations as under:

E,=Zyli=Zy Vo= 1,2, aciPia iGhsa ;] 34)
Hence, ci1=Ei=Zp: Ep=7Zy :

Also, e1=Ep-Eg-vpi:

So that Zy = Zgi - Zgi- vt ¥V i=1.2..6...p..g....m, #] (35)

Since now the current in the added element is i, = —1, = 1.0, we have from (29)
iy = Y Vi * TV =1

¥V,
2 N Y
Solving, v, =—14+—"—"—"—

Yo pt
y..|E-E
Vu=-1 4,;._"."_"(_'__‘_) (36)
Yot
However,
.‘.'pl,n = .‘-'~n
And Yotit = Youire (37)

Using (34). (36) and (37) in (35), we get



l+_\-'~"(2,‘—2“)

Zy=Z, -7 4 ———— (38)
Yoo
Special Cases Contd....

The following special cases of analysis concerning Zgus building can be considered

with respect to the addition of link to a p-network.

Case (c): If there is no mutual coupling, then elements of ¥ are zero. Further, if p

is the reference node, then E;=0. thus.
zZ =-Z

ot

o
i=12. mizl

Zy=-Z, 42, .. (39)
From (39), it is thus observed that, when a link is added to a ref. bus, then the
situation is similar to adding a branch to a fictitious bus and hence the following steps
are followed:
1. The clement is added similar to addition of a branch (case-b) to obtain the new
matrix of order m+1.
2. The extra fictitious node, | is eliminated using the node climination algorithm.

Case (d): If there is no mutual coupling, then clements of ¥ are zero. Further. if p
is not the reference node, then

Zyi=Zpi- Zy
Zy=Zpi~ Zy— 2y
=Zyp+ Loy~ 2 gt Zpg g (40

MODIFICATION OF Zgs FOR NETWORK CHANGES

An clement which is not coupled to any other element can be removed casily. The
Zies is modified as explained in sections above, by adding in parallel with the element
(to be removed). a link whose impedance is equal to the negative of the impedance of
the clement to be removed. Similarly, the impedance value of an clement which is not
coupled to any other element can be changed casily. The Zy,, is modified again as
explained in sections above, by adding in parallel with the element (whose impedance
is to be changed), a link element of impedance value chosen such that the parallel
equivalent impedance is equal to the desired value of impedance. When mutually
coupled clements arc removed, the Zy,, is modified by introducing appropriate
changes in the bus currents of the original network to reflect the changes introduced
due to the removal of the clements.



Examples on Zgus building

Example 1: For the positive sequence network data shown in table below, obtain
Zgus by building procedure.

p-q S

SI. No. (nodes) re:tance
pu
1 0-1 0.25
2 | 03 0.20
3 1-2 0.08
4 | 23 | 006

Solution:
The given nctwork is as shown below with the data marked on it. Assume the

clements to be added as per the given sequence: 0-1, 0-3, 1-2, and 2-3.
O ©
3

0.08

0.20

@ 0.215 @

Fig. E1: Example System

"
(=]

Consider building Zgy:s as per the various stages of building through the consideration
of the corresponding partial networks as under:

Step-1: Add clement-1 of impedance 0.25 pu from the external node-1 (g=1) to
intemnal ref. node-0 (p=0). (Case-a). as shown in the partial network;

P-network

Z g5 =[] 0.25




Step-2: Add clement-2 of impedance 0.2 pu from the external node-3 (g=3) to
internal ref. node-0 (p=0). (Case-a), as shown in the partial network;

P-netsvork —6
Zpus™ _®

1 3
025/ 0
0 |02

o _ 1
Zps = 3

Step-3: Add clement-3 of impedance 0.08 pu from the external node-2 (g=2) to
internal node-1 (p=1). (Case-b), as shown in the partial network:

@ 0.08 @
1O
Zaus'® ‘@

P-network

U R

1(025| 0 | 025
Zms"'= 3| 0 02| 0
21025 0 (033

Step-4: Add clement—4 of impedance 0.06 pu between the two internal nodes. node-2
(p=2) to node-3 (q=3). (Case-d), as shown in the partial network:



1 3 2 ]
1025 o [025]025
3[ 0 Jo2] o [-02
2(025] 0 |033]033
102502033059

The fictitious node [ is eliminated further to arrive at the final impedance matrix as
under:

O DU - L
0.1441  0.0847 | 0.1100
0.0847  0.1322 | 0.1120
0.1100 | 0.1120 | 0.1454

(Finad)
Zyus =

e e -

Example 2: The Zgus for a 6-node network with bus-6 as ref. is as given below.
Assuming the values as pu reactances, find the topology of the network and the
parameter values of the elements involved. Assume that there is no mutual coupling of
any pair of elements.,

8 3 3 °4 ‘8
1{2]10/010/2
2l0(2/0/2(0

Zms= 3/(0/0. 2/0]|0
4|10(2/0|3(0
5|2/0/0/0(3

Solution:

The specified matrix is so structured that by its inspection, we can obtain the network
by backward analysis through the various stages of Zgy building and p-networks as
under:






B
2.0 pu
=

Thus the final network is with 6 nodes and 5 clements connected as follows with the
impedance values of elements as indicated.

Fig. E2: Resultant network of example-2



Example 3: Construct the bus impedance matrix for the system shown in the figure
below by building procedure. Show the partial networks at each stage of building the
matrix. Hence arrive at the bus admittance matrix of the system. How can this result
be verified in practice?

jo.1 j0.6

Solution: The specified system is considered with the reference node denoted by
node-0. By its inspection. we can obtain the bus impedance matrix by building
procedure by following the steps through the p-networks as under:

Stepl: Add branch | between node 1 and reference node. (g=1. p=0)
Zpos™=| ) @

1
zbus(n = 1[_}0 ]]

Step2: Add branch 2, between node 2 and reference node. (q=2. p=0).

Zaus™ -
pacomsc | @)




1 2
1fjor o0
Z,‘,= -
2l 0 Jo1s

Step3: Add branch 3, between node 1 and node 3 (p=1.q=3)

¥ & 3

ifjo1r o jo1

Z,, =2 0 joi15 o
3j01 0 05

Step 4: Add clement 4, which is a link between node 1 and node 2.(p=1.q=2)




1 2 3 I
1( jo1 [ Jal o o
210 J0.15 0 -5
zm = . . .
3o [ Jos o g
01 = go1s o o1 p0BEs

Now the extra node- has to be eliminated 1o obtain the new matrix of step-4, using
the algorithmic relation:

Y = Y™ - Yu Yo/ Y Wii=12,3

1 2 3

JO.08823  JO01765 008823
Tae =|j001765 J0O12353 jOD1765
JO.08823 JOOITES 048923

Step 5: Add link between node 2 and node 3 (p = 2, g=3)

oy s{‘ﬂ

p-network

SRR



Zp= 2y -2y = j001765— j0.08823 = - j0.07058
Z, =2, -2, = j012353- jOO1765 = f0.10588

Zg =2y Ty = jO.D1765— (048823 = — jO4T058
Cy=Zy=Lytins
= J0.10588 -~ j0.47058)+ j0.4 = jO.97646

Thus, the new matrix is as under:

1 2 3 1

1[ joosses 001765 008623 - jO.0705S
2| JO0TTES 012353 001765 jo109gs
T3 j00RR3  jOOITES  O4SE23 - jD.ATOSE
|- j007058 010588 — ;047058 097646

i

Node [ is eliminated as shown in the previous step:

1 z 3

1008313 002530 ;005421
£, =2| /002530 jO11205 jOOes6s
3| 005421 jO06EsE 026145

Further, the bus admittance matrix can be obtained by inverting the bus impedance
matrix as under:
1 2 3
- A4.1687  Jldcsd J2.5
Yoe =[EM]4=2 JlassT - jl0E3zs 25
3 s JES - jab

As a check, it can be observed that the bus admittance matrix, Ygps can also be
obtained by the mule of inspection to arrive at the same answer.



Example 4: Form the bus impedance matrix for the network shown below.

Solution:
Add the clements in the sequence. 0-1, 1-2, 2-3, 0-3, 34, 2-4, as per the various steps
of building the matrix as under:

Stepl: Add clement 1. which is a branch between node-1 and reference node.

1
Zy, = 1,1.25]

Step2: Add clement 2, which is a branch between nodes 1 and 2.

1 2
1| j1.25 j1.25
zzw = y 2
217125 J15
Step3: Add clement 3. which is a branch between nodes 2 and 3

2 B
1125 j125 j1.25
z,, =2|j125 j15 j15
3125 j15 19

Step4: Add clement 4, which is a link from node 3 to reference node.



1 2 3 i
1[j1.25 j1.25 j125 j125
21025 a5 5 15
3125 15 19 19
125 15 1.9 4315

Eliminating node /.

1 2 3
j075367  j0.65476 0.49603
Z,,=|j065476 j078571 j0.59524
JOA9603 059524 70.75397

StepS: Add clement 5. a branch between nodes 3 and 4.

1 2 3 4
1[j075357 j0.65476 j0O49603 j0.49603

2| 065476 065476 059524 j0.59524
a3l 049603 j0.59524 j075397 075397
4| 049603 ;059524 075397 095397

Step 6: Add clement 6, a link between nodes 2 & 4.

1[4075397 ;065476 049603 (049603 4015873
2| j065476 065476 j0.59524 ;059524 019047
Zy, = 3| j0O49603 ;059524 075397 ;075397 - 4015873
4| j0.49603 j0.55524 075357  jDO5397 - j0.35873
{|/0.15873 019047 - j0.15873 - j0.35873 jD.67421

Eliminating node / we get the required bus impedance . matrix



1 2 3 4
1[j07166 jOE099 05334 jO 5805
2| j0.6099 07319 j0.6401 06966
%3] /05334 j0.6401 JOT166 j0.6695
4| j0.5805 jOE966 06695 jOTE31

Example 5: Form the bus impedance matrix for the network data given below.

_ Self Impedance | Mutual Impedance
Element  Bus | zpqpq Bus Zpg.rs
P-9 (pu) r-s (pu)

1 1-2(1) | jo.6

2 1-2(2) | jo4 | 1-21) Jjo2

Solution:
Let bus-1 be the reference. Add the elements in the sequence 1-2(1), 1-2(2). Here. in
the step-2, there is mutual coupling between the pair of elements involved.

1-2() 21=j06
~
@ -
Y
Ref. 1-22) 1=j04

Stepl: Add clement | from bus | to 2. element 1-2(1). ( p=1, g=2, p is the reference
node)

2
Zvw = 2 [j0.6]

Step2: Add clement 2, element 1-2(2), which is a link from bus1 to 2, mutually
coupled with element 1. 1-2(1).
2

2| jo6 Z,
Zh, =

L2, Z;
Where,
Yu@uo'Ze =22

Yixayn(a)
Zyy = 2, = 0Cas bus 1 is reference)

Zy=Zp=-Inp+



Consider the primitive impedance matrix for the two elements given by

1-2(1) 1-2(2)
1-201 I[Jrn.ﬁ J'C'.E]

[=]= ) )
1-2{2)| joz jo4

Thus the primitive admittance matrix is obtained by taking the inverse of [z] as

1201y 1-2(2)

1-21[- 20 10
= 1—2-2.[ Jio —_;'3.13}

Thus,

Framem = 1100 mamoza = 50

So that we have,

. 1.0 = jOA| .
Zy=Ep=—j06t ﬁ:‘.}nﬂ-
1+ (Zy=Z5) ;
T m iy et MDA =30.4+—1+'ﬁ'?'5m'4'=“m.5
Mo =d
2 i
2[ jog - J'CI.4:|
By = . .
H=-jo4a s

Thus, the network matrix corresponding to the 2-node, 1-bus network given. is
obtained after climinating the extra node-l as a single clement matrix, as under:

2
Zy, =30 3333]



; Power Flow Ana]ﬁfsj::-.

* A power flow study (load-flow study) is a steady-state
analysis whose target is to determine the voltages,
currents, and real and reactive power flows in a system
under a given load conditions.

* The purpose of power flow studies is to plan ahead and
account for various hypothetical situations. For example, if
a transmission line is be taken off line for maintenance, can
the remaining lines in the system handle the required loads
without exceeding their rated values.




The basic equation for power-flow analysis is derived from
the nodal analysis equations for the power system: For
example, for a 4-bus system,

where Y are the elements of the bus admittance matrix, V, are
the bus voltages, and /; are the currents injected at each node.
The node equation at bus i can be written as

I, = ZI}LVZ
=

Relationship between per-unit real and reactive power
supplied to the system at bus i and the per-unit current
injected into the system at that bus:

S, =V =B+ jO,

where V,is the per-unit voltage at the bus; [* - complex
conjugate of the per-unit current injected at the bus; P, and Q,
are per-unit real and reactive powers. Therefore,

1] =(R+jO)/V, =1,=(B—jo)V,

= PO, =V, XYV, =3 vy

J=1



Let Y,9Y,|£0, and V,HV,|ZS,
Then P—jQ, =Y | Y1V, |V, |L6,+6,-5)
j=1
Hence, B=2|Y, |V, 1V|cos(d,+8,-6)

j=1

and Q== |Y, |V, |V,|sin(0, +5,-5)
j=1




There are 4 variables that are associated with each bus:
o P,
o Q,
o V,
o 0.

Meanwhile, there are two power flow equations associated
with each bus.

In a power flow study, two of the four variables are defined
an the other two are unknown. That way, we have the
same number of equations as the number of unknown.

The known and unknown variables depend on the type of
bus.




Each bus in a power system can be classified as one of three types:

1.

Load bus (P-Q bus) — a buss at which the real and reactive
power are specified, and for which the bus voltage will be
calculated. All busses having no generators are load busses. In
here, V and & are unknown.

Generator bus (P-V bus) — a bus at which the magnitude of the
voltage is defined and is kept constant by adjusting the field
current of a synchronous generator. We also assign real power
generation for each generator according to the economic
dispatch. In here, Q and & are unknown

. Slack bus (swing bus) — a special generator bus serving as the

reference bus. Its voltage is assumed to be fixed in both
magnitude and phase (for instance, 1.20° pu). In here, P and Q
are unknown.




« Note that the power flow equations are non-linear, thus cannot
be solved analytically. A numerical iterative algorithm is
required to solve such equations. A standard procedure
follows:

1. Create a bus admittance matrix Y, for the power system;

2. Make an initial estimate for the voltages (both magnitude
and phase angle) at each bus in the system;

3. Substitute in the power flow equations and determine the
deviations from the solution.

4. Update the estimated voltages based on some commonly
known numerical algorithms (e.g., Newton-Raphson or
Gauss-Seidel).

5. Repeat the above process until the deviations from the
solution are minimal.




Consider a 4-bus power system below. Assume that
— bus 1isthe slack bus and that it has a voltage V1 =1.020° pu.

— The generator at bus 3 is supplying a real power P3 =0.3 pu to the
system with a voltage magnitude 1 pu.

— The per-unit real and reactive power loads at busses 2 and 4 are P2
=0.3pu,Q2=0.2pu, P4=0.2 pu, Q4 =0.15 pu.

ﬁD@

Table of Buses:
Hus 1 Slack bus
Bus 2 Loxad bus
e = Bus 3 Gencrator bus
IAM" Ll.\ﬂiz Hlﬂ-'l IH.]"U'\

e




* Y-bus matrix (refer to example in book)

1.7647— j7.0588 —0.5882+ j2.3529 0 ~1.1765+ j4.7059
p | 03882+)23529 1.5611-76.6290 -03846+ /19231 -0.5882+ 23529
e 0 —0.3846+ j1.9231 1.5611—j6.6290 —1.1765+ j4.7059

~1.1765+ j4.7059 —0.5882+ j2.3529 —1.1765+ j4.7059 2.9412— j11.7647

I =1.0207 pu
* Power flow solution: V,=0.9642—0.97° pu
V, =1.021.84° pu
V,=0.982-0.27° pu
* By knowing the node voltages, the power flow (both active

and reactive) in each branch of the circuit can easily be
calculated.




CHAPTER 3

LOAD FLOW ANALYSIS

[CONTENTS: Review of solution of equations, direct and iterative methods,
classification of buses, importance of slack bus and Ygus based analysis,
constraints involved, load flow equations, GS method: algorithms for finding the
unknowns, concept of acceleration of convergence, NR method- algorithms for
finding the unknowns, tap changing transformers, Fast decoupled load flow,
illustrative examples]

REVIEW OF NUMERICAL SOLUTION OF EQUATIONS

The numerical analysis involving the solution of algebraic simultancous equations
forms the basis for solution of the performance equations in computer aided electrical
power system analyses, such as during lincar graph analysis, load flow analysis
(nonlincar cquations), transient stability studies (differential equations), etc. Hence, it
is necessary to review the gencral forms of the various solution methods with respect
to all forms of equations, as under:
1. Solution Linear equations:
* Direct methods:

- Cramer’'s (Determinant) Mcthod,

- Gauss Elimination Mcthod (only for smaller systems),

- LU Factorization (more preferred method). ete.

* Iterative methods:
- Gauss Mcthod
- Gauss-Siedel Mcthod (for diagonally dominant systems)
2. Solution of Nonlinear equations:
Iterative methods only:
- Gauss-Siedel Method (for smaller systems)
- Newton-Raphson Method (if carrections for variables are small)
3. Solution of differential equations:
Iterative methods only:
- Euler and Modified Euler method,
- RK IV-order method,

- Milne’s predictor-corrector method. etc.




It is to be observed that the nonlincar and differential equations can be solved only by
the iterative methods. The iterative methods are characterized by the various
performance features as under:

*  Selection of initial solution/ estimates

* Determination of fresh/ new estimates during cach iteration

*  Sclection of number of iterations as per tolerance limit

* Time per iteration and total time of solution as per the solution method selected

* Convergence and divergence criteria of the iterative solution

®  Choice of the Acceleration factor of convergence, etc.

A comparison of the above solution methods is as under:

* In general, the direct methods yicld exact or accurate solutions. However, they
arc suited for only the smaller systems, since otherwise. in large systems, the
possible round-off errors make the solution process inaccurate.

* The iterative methods are more useful when the diagonal clements of the
coefficient matrix are large in comparison with the off diagonal elements. The
round-off errors in these methods are corrected at the successive steps of the
iterative process.

* The Newton-Raphson method is very much useful for solution of non —lincar
cquations, if all the values of the corrections for the unknowns are very small
in magnitude and the initial values of unknowns are sclected to be reasonably

closer to the exact solution.

LOAD FLOW STUDIES

Introduction: Load flow studies are important in planning and designing future
expansion of power systems. The study gives steady state solutions of the voltages at
all the buses, for a particular load condition. Different steady state solutions can be
obtained. for different operating conditions. to help in planning. design and operation

of the power system.

Generally, load flow studies arc limited to the transmission system. which involves
bulk power transmission. The load at the buses is assumed to be known. Load flow

(]




studies throw light on some of the important aspects of the system operation, such as:
violation of voltage magnitudes at the buses. overloading of lines, overloading of
generators, stability margin reduction, indicated by power angle differcnces between
buses linked by a line. effect of contingencies like line voltages. emergency shutdown
of gencrators, ctc. Load flow studies are required for deciding the economic operation
of the power system. They are also required in transicent stability studies. Hence, load-

flow studies play a vital role in power system studics.

Thus the load flow problem consists of finding the power flows (real and reactive)
and voltages of a network for given bus conditions. At cach bus, there are four
quantitics of interest to be known for further analysis: the real and reactive power, the
voltage magnitude and its phase angle. Because of the nonlincarity of the algebraic
equations, describing the given power system, their solutions are obviously, based on
the iterative methods only. The constraints placed on the load flow solutions could be:

* The Kirchhoff's relations holding good,

s Capability limits of reactive power sources,

*  Tap-sctting range of tap-changing transformers,

® Specified power interchange between interconnected systems,

® Sclection of initial values. acceleration factor, convergence limit, ete.

Classification of buses for LFA: Diffcrent types of buses are present based on the
specified and unspecified variables at a given bus as presented in the table below:

Table 1. Classification of buses for LFA

:t. o Ty Variables | Um-ubles Rommetn

B T O (LI B Pyt
: slca‘:::::lr :’V Bus P. [V Qa. 8 ':i';:::l l:t(::'sis S
3 | Load/ PQ Bus P6. Qo V|, 8 f;:"mmmmdpo
4 | Conmteanus [ PaQaIVI| 83 | oy ruming mtormer




Importance of swing bus: The slack or swing bus is usually a PV-bus with the
largest capacity generator of the given system connected to it. The generator at the
swing bus supplies the power difference between the “specified power into the system
at the other buses™ and the “total system output plus losses”. Thus swing bus is
nceded to supply the additional real and reactive power to meet the losses. Both the
magnitude and phase angle of voltage are specified at the swing bus, or otherwise,
they are assumed to be equal to 1.0 p.u. and 0" as per flat-start procedure of iterative
solutions. The real and reactive powers at the swing bus are found by the computer
routine as part of the load flow solution process. 1t is to be noted that the source at the
swing bus is a perfect one, called the swing machine, or slack machine. It is voltage
regulated. i.c.. the magnitude of voltage fixed. The phase angle is the system reference
phasc and hence is fixed. The generator at the swing bus has a torque angle and
excitation which vary or swing as the demand changes. This variation is such as to
produce fixed voltage.

Importance of Yyys based LFA: The majority of load flow programs employ
methods using the bus admittance matrix, as this method is found to be more
cconomical. The bus admittance matrix plays a very important role in load floe
analysis. It is a complex, squarc and symmetric matrix and hence only n(n+1)/2
clements of Ygps need to be stored for a n-bus system. Further, in the Ygys matrix, Y
=0, if an incident clement is not present in the system connecting the buses °i” and *j°.
since in a large power system, cach bus is connected only to a fewer buses through an
incident element. (about 6-8). the coefficient matrix. Ysus of such systems would be
highly sparse, i.c., it will have many zero valued clements in it. This is defined by the
sparsity of the matrix, as under:

B ity Total no. of zero valued clements of Ygys

given matrix of n" arder:

Total no. of entrics of Ygis

s (Z/n®) x 100 % (1

The percentage sparsity of Ygys. in practice. could be as high as 80-90%. especially
for very large. practical power systems. This sparsity feature of Ygus is extensively




used in reducing the load flow calculations and in minimizing the memory required to
store the cocfficient matrices. This is due to the fact that only the non-zero elements
Ygus can be stored during the computer based implementation of the schemes, by
adopting the suitable optimal storage schemes. While Ygus is thus highly sparse, it's
inverse, Zgus, the bus impedance matrix is not so. It is a FULL matrix, unless the
optimal bus ordering schemes are followed before proceeding for load flow analysis.

THE LOAD FLOW PROBLEM

Here. the analysis is restricted to a balanced three-phase power system, so that the
analysis can be carried out on a single phase basis. The per unit quantities are used for
all quantitics. The first step in the analysis is the formulation of suitable equations for
the power flows in the system. The power system is a large interconnected system,
where various buses arc connected by transmission lines. At any bus. complex power
is injected into the bus by the generators and complex power is drawn by the loads. Of
course at any bus. cither one of them may not be present. The power is transported
from onc bus to other via the transmission lines. At any bus i. the complex power S;
(injected), shown in figure 1. is defined as
Si = Sai — Sni (2)

PitjQi  PertiQa

Fig.1 power flows at a bus-i

where Si = net complex power injected into bus i. Sgi = complex power injected by
the generator at bus i, and Sp; = complex power drawn by the load at bus i. According

to conservation of complex power, at any bus i, the complex power injected into the




bus must be equal to the sum of complex power flows out of the bus via the
transmission lines. Hence.

Si=2S;5 Viam X 2senssa n (3)
where Sijis the sum over all lines connected to the bus and i is the number of buses in
the system (excluding the ground). The bus current injected at the bus-i is defined as

L= 1o = Tpi "2 LD 15 SR n 4
where Ig; is the current injected by the generator at the bus and Ipy is the current drawn
by the load (demand) at that bus. In the bus frame of reference

Igus = Ygus Vaus (5)
where
Il
I:
Igus=| - is the vector of currents injected at the buses,
!

Yaus is the bus admittance matrix, and

Vl
V:
Vaus= | . is the vector of complex bus voltages.
v,
Equation (5) can be considered as
L= Y ¥y, £ Lo B SRRTEES n (6)
)=1

The complex power S; is given by
Si=Vv; I

=V [,z'_;); v, ]
=V, [gy,‘ V;] (M

Let VAW |28, = v [(cos 6, + jsin )

8,=8,-8,




Y, =G, + jB,

Hence from (7). we get,
Sn=i|";l lV,l (cosﬁ, K jsinév)(G“ -jBu) (8)
=1

Separating real and imaginary parts in (8) we obtain,

P = iIV,l |V,| (Gv cosd, + Businbv) 9)
=1

Qi= ii\’,l |VJ| (G.,,sinﬁv - B,cosb,) (10)
I=1

An alternate form of P; and Q; can be obtained by representing Yy also in polar form
as vi= [v] 20, (an

Again, we get from (7),

Si=|\’,|£b,i |yu|4—0y IV,IA—(‘., (12)
i~
The real part of (12) gives Pi.

p=| S. IYul |V,|oos(—0v +8,-8,)
-
=‘VAI2|Y_,”V,ICDS-(0“-5|+1") or
=

P =i WIV||¥) cos®, -5, +8,)  wi=12. o, (13

=]

Similarly. Q; is imaginary part of (12) and is given by

o, =|v,|£ Y, v,| sin—(0,—8,46,) or
I~
0. =-3 W|WV|||sin@, -5,+5,) wi-12...... n (14)
i=t

Equations (9)-(10) and (13)<(14) arc the ‘power flow equations’ or the ‘load flow
cquations” in two alternative forms, corresponding to the n-bus system. where cach
bus-i is characterized by four variables, P;. Qi [Vi}, and 8. Thus a total of 4n

variables are involved in these equations. The load flow equations can be solved for




any 2n unknowns. if the other 2n variables are specified. This establishes the need for
classification of buses of the system for load flow analysis into: PV bus, PQ bus, ctc.

DATA FOR LOAD FLOW

Irrespective of the method used for the solution, the data required is common for any
load flow. All data is normally in pu. The bus admittance matrix is formulated from
these data. The various data required are as under:

System data: It includes: number of buses-n, number of PV buses. number of
loads, number of transmission lines, number of transformers, number of shunt
clements, the slack bus number, voltage magnitude of slack bus (angle is generally
taken as 07), tolerance limit, base MVA, and maximum permissible number of
iterations.

Generator bus data: For every PV bus i, the data required includes the bus
number, active power generation Pgi. the specified voltage magnitude |V, m|. minimum
reactive power limit Q; yip. and maximum reactive power limit Q-

Load data: For all loads the data required includes the the bus number, active
power demand Ppy;, and the reactive power demand Qp;.

Transmission line data: For ecvery transmission line connected between buses
i and k the data includes the starting bus number i, ending bus number k,.resistance of
the line, reactance of the line and the half line charging admittance.

Transformer data:

For every transformer connected between buses i and & the data to be given includes:
the starting bus number 7, ending bus number k, resistance of the transformer,
reactance of the transformer, and the off nominal tums-ratio a.

Shunt element data: The data needed for the shunt element includes the bus

number where clement is connected, and the shunt admittance (Ggh + j Bah).

GAUSS - SEIDEL (GS) METHOD

The GS method is an iterative algorithm for solving non lincar algebraic equations.
An initial solution vector is assumed, chosen from past experiences, statistical data or

from practical considerations. At every subsequent iteration, the solution is updated




till convergence is reached. The GS method applied to power flow problem is as

discussed below.

Case (a): Systems with PQ buses only:
Initially assume all buses to be PQ type buscs, except the slack bus. This means that
(n—1) complex bus voltages have to be determined. For case of programming, the
slack bus is generally numbered as bus-1. PV buses are numbered in sequence and PQ
buses are ordered next in sequence. This makes programming casier. compared to
random ordering of buses. Consider the expression for the complex power at bus-i,
given from (7), as:

Si=Vi[ Z- Yo V ,]

=1 /

This can be written as
s =V (Z);, v,} (15
=1
Since 5 =P, - jQ;. we get.

F-JO _«
—==3%rv
V' ; o !

¢

So that,
n
B30 Yy Vi &) ¥YuV¥, i»
LA I=1
j=7i
Rearranging the terms, we get,
Vi= | B _ Yy ,v,| vi-23.in an
Y v

i : Jau

Equation (17) is an implicit equation since the unknown variable. appears on both
sides of the equation. Hence. it needs to be solved by an iterative technique. Starting
from an initial estimate of all bus voltages, in the RHS of (17) the most recent valucs
of the bus voltages is substituted. One iteration of the method involves computation of
all the bus voltages. In Gauss—Scidel method. the value of the updated voltages are

used in the computation of subsequent voltages in the same iteration, thus speeding up




convergence. lterations are carried out till the magnitudes of all bus voltages do not
change by more than the tolerance valuc. Thus the algorithm for GS method is as
under:

Algorithm for GS method
1. Prepare data for the given system as required.

2. Formulate the bus admittance matrix Ygus. This is generally done by the
rule of inspection.

3. Assume initial voltages for all buses, 2,3....n. In practical power systems,
the magnitude of the bus voltages is close to 1.0 p.u. Hence, the complex
bus voltages at all (n-1) buses (except slack bus) are taken to be 1.0Z£ 0.
This is normally refered as the flat start solution.

4. Update the voltages. In any (k +1)" iteration, from (17) the voltages arc
given by

- it n
v = ;'- [% D2 M S Zy.,v;"] Vi=23...n (18)
" i =1

=i
Here note that when computation is carried out for bus-i. updated values
arc already available for buses 2.3.._(1-1) in the current (k+1J" iteration.
Hence these values are used. For buses (i+17).....n, values from previous,
K™ itcration are used.

5. Continue iterations till
|Av,"'“| g |v,""' —v¥| < Vi=23..n (19)
Where,= is the tolerance value. Generally it is customary to use a value of
0.0001 pu.

6. Compute slack bus power after voltages have converged using (15)

[assuming bus | is slack bus].
5 =P1 - jQi =V,'[ZY,,V,] (20
=1

7. Compute all line flows.
8. The complex power loss in the line is given by S + Sy;. The total loss in

the system is calculated by summing the loss over all the lines.

10




Case (b): Systems with PV buses also present:
At PV buses, the magnitude of voltage and not the reactive power is specified. Hence
it is needed to first make an estimate of Qj to be used in (18). From (15) we have

Qi=-Im {V,' i)’,, V,}
-
Where Im stands for the imaginary part. At any (k+7)" iteration. at the PV bus-i,
o' =—Im {(V,"')' ir, visY e vy in v 1)
= ~
The steps for i PV bus are as follows:

hely

1. Compute Q, using (21)

2. Calculate V; using (18) with Q; = @/**"
3. Since |Vi| is specified at the PV bus, the magnitude of Vi obtained in step 2
has to be modified and set to the specified value l'b’,_ml . Therefore.

V""" =t\,1”| é‘\:‘.nn (22)

The voltage computation for PQ) buses does not change.

Case (c¢): Systems with PV buses with reactive power generation limits specified:
In the previous algorithm if the Q limit at the voltage controlled bus is violated during

(hely

any iteration, ic Q) computed using (21) is cither less than Q; gy, or greater than
Qumax. it means that the voltage cannot be maintained at the specified value due to
lack of reactive power support. This bus is then treated as a PQ bus in the (k+1/”
iteration and the voltage is calculated with the value of Qi set as follows:

I Qi < Qi yim IF Q> Qs

Then Qi = Qimin Then Qi = Qimax.

(23)
If in the subsequent iteration. if Q; falls within the limits. then the bus can be switched

back to PV status.

Acceleration of convergence
It is found that in GS method of load flow, the number of iterations increase with

increase in the size of the system. The number of iterations required can be reduced if




the comrection in voltage at cach bus is accelerated. by multiplying with a constant a.
called the acceleration factor. In the (k+1)® iteration we can let

v.'"“Yaccelerate d)=v" +a (v - v'V) 24)
where a is a real number. When a =1, the valuc of v**" is the computed value. If
1 < a < 2, then the value computed is extrapolated. Generally a is taken between 1.2
to 1.6, for GS load flow procedure. At PQ buses (pure load buses) if the voltage
magnitude violates the limit. it simply mecans that the specified reactive power
demand cannot be supplied, with the voltage maintained within acceptable limits.

ysis:

Example-1: Obtain the voltage at bus 2 for the simple system shown in Fig 2, using
the Gauss-Seidel method, if Vi = 1 £ 0’ pu.

1 8=]1.0

'

{2)

Z=)j0.5

Spp=0.5+j1

Fig : System of Example 1
Solution:
Here the capacitor at bus 2, injects a reactive power of 1.0 pu. The complex power
injection at bus 2 is
S:=jl.0—(0.5+j 1.0)=— 0.5 pu.

vi=120"
-j2 j2

YBus = [ _J J_ ]
2 -j2

V:'l.n =YL|iPE "j)-Q: =% y:l Vl:l
=] W

Since V| is specified it is a constant through all the iterations. Let the initial voltage at

bus2, VS =1+j0.0=120"pu




L[-05 (0 iz ]]

v! = _—
—Jj2] 1’

= 1.0 —j0.25 = 1.030776 &£ — 14.036"

.1 —0.5 .
Vi= —  _ [j2=120")
P 2| 10%0776214.036

=0.94118 —j 0.23529 =D.970145 £ —14.036"

V. =L[ _— (2= un"}]

— j2 | D.970145.£14.036"

=0.9375 - j 0.249000 =D.97026] —I-4-."§|_"I-]|:l

p’*= l $—{jqﬁl:ﬁﬂo}
T~ 2| 0970261.£14.931"
=0.933612 — j 0.248963 = 0.966237 2 —14.931"
. LT -0.5 : :
Vi = - 2| 0.966237 £14.931° -\ax1ar)

=0.933335 —j 0.25 =0.966237 - 14.995"

Since the difference in the voltage magnitudes is less than Lo pu. the iterations can

be stopped. To compute line flow

V-V, 140" - 0966237 £ -14.995
1z ZI: _f'llS

=0517472 ~-14931"
5. =vi,=1£0"x0517472 £ 14.931°
=0.5+0.133329 pu
_ V-V, D966237.7-14.995" 120
oz, j0.s

iz

=0.517472 £ —-194.93"

5, =V, =-05+j00pu
The total loss in the line is given by
Siz4 521= j0.133329 pu
Obviously, it is observed that there is no real power loss, since the line has no

resistance.




Example-2:

For the power system shown in fig. below, with the data as given in tables below,

obtain the bus voltages at the end of first iteration, by applying GS method.

W
)

Power System of Example 2

\
|\2/

Line data of example 2

R | X | B
(pu) | (pu)
0.10 040 -
0.15 060 -
0.05 020 -
0.05 020] -
0.10| 040/ -
1005 020 -

w
w
m
=

I~

Wi e

W1 1] e | | e
W

Bus data of example 2

Bus No. | Pa (Qa | Po | Qo IV”I a
(pu) | (pu)  (pu) (pu) (pu)

1 = - - - 120

2 - - 0.60 030 - -

3 1.0 - - - 1.04 | -

4 - - 040 0.10 - -

5 |- - 060 020 - -

Solution: In this example. we have,
* Bus I is slack bus, Bus 2, 4. 5 are PQ buses, and Bus 3 is PV bus

e The lines do not have half line charging admittances
P1+iQ2 =Pg2 + Qa2 — (Pp2 +jQm) = - 0.6 - jO.3
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P3 + Q1 =Pa3 + jQc3 — (Pp3 + jQm) = 1.0 + jQa3
Similarly Py + jQy = 0.4 —j0.1, Ps+jQs =—0.6-j0.2
The Yees formed by the rule of inspection is given by:

215685 | -0.58823 | 0.0+j0.0 | -0.39215 | -1.17647
-j8.62744 | +i2.35294 +j1.56862 | +j4.70588
0.58823 | 235293 | -1.17647 | -0.58823 | 0.0+j0.0
+§2.35204 | -j9.41176 | +j4.70588 | +j2.35204
0.0+j0.0 | -1.17647 | 235204 | 0.04j0.0 | -1.17647

+i4.70588 | -j9.41176 +j4.70588
0.39215 | -058823 | 0.0+j0.0 | 098038 | 0.0+j0.0
+1.56862 | +j2.35294 -13.92156

T-1.17647 | 0.0+j00 | -1.17647 | 0.0+j0.0 | 2.35294

+j4.70588 +j4.70588 -j9.41176

The voltages at all PQ buses arc assumed to be equal 1o 14j0.0 pu. The slack bus
voltage is taken to be V,° = 1.02+j0.0 in all iterations.

v:l =YL[%— Y:l Vl“ -Y:l V; 5 Yx th —st Vﬁo]

—06+ j03
- [—Jo — {-0.58823 + j2.35294) x 1.0220"

“Y. | 10— joo
—{(-1.17647 4 j4.70588) x 1.0420° | - |-0.58823 + j2.35294) x 1.0.20" ||
= 0.98140 £ -3.0665" = 0.97999 - j0.0525
Bus 3 is a PV bus. Hence, we must first calculate Q. This can be done as under:

Q’ = IV‘l IV.I (G)l sind N B!l cosd " ) + Ivvl IV:l (61: Sin'\'.n e Bu COSlsu )
+ Iv‘ll (Gn sind I Bn cosd n) +|VJ IV‘l (G,u sind LT Bu cosé % )
+ |V1I'V9|(GL- Sinén = B” cos'\'u)
We note that §; = 0% 8 =-3.0665" 83=0" 84=0" and 85=0°
S0 =81 = du =635 =0" (B =6 — &) On = 3.0665°
Q3= 104 [1.02(0.0+j0.0) + 0.9814 [-1.17647 x 5in(3.0665") — 4.70588

xcos(3.0665°))+1.04{-9.41176 xcos(0°)}+1.0 [0.0 + j0.0]+1.0{—4.70588xcos(0%) }]
= 1.04 [-4.6735 + 9.78823 — 4.70588] = 0.425204 pu.

P -
V.“ =YL["T{Q‘_ ¥y Vl“ -¥a V:. -Y, Vau =Y, Vsu}

» 3
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. -rl: [% — {-1.7647 + j4.70588) x (0.98140.£ —3.0665")
—{(~1.17647 + j4.70588) x (1.20")
= 1.05569 £3.077" = 1.0541 + j0.05666 pu.
Since it is a PV bus, the voltage magnitude is adjusted to specified value and V) is

computed as:  V,' = 1.04 £3.077"pu

1 |P -
Val =-{‘_..{Q‘ s Yu VI" =) YA: V:I = yu V: "yu Van]
Y, V4

~{~0.39215 + j1.56862)x 1.0220° |

1 [-044 joa
¥,| 1.0- joo

—|{(~0.58823 + j2.35294) x(0.98140.2 - 3.0665)} |

_ 0.45293 — j3.8360

= =0.955715 £ -7.303" pu = 0.94796- j0.12149
0.98038 — j3.92156

1 | P -0 .

- in.2
=1 | 2064702 & | 17647 + j4.70588)x 1.02.207}
Y..| 1.0- joo

—{-1.17647 + j4.70588)x 1.04.23.077°}]
= 0.994618 £ -1.56" = 0.994249 — j0.027

Thus at end of 1% iteration, we have,

Vv, =1.0220"pu V1 =098140 £ -3.066" pu
Vi=1.0423.077" pu Vi=09557152-7.303" pu
and Ve =0.994618 2 -1.56" pu

Example-3:
Obtain the load flow solution at the end of first iteration of the system with data as
given below. The solution is to be obtained for the following cases

(i) All buses except bus 1 are PQ Buses

(i) Bus 2 is a PV bus whose voltage magnitude is specified as 1.04 pu

(iii) Bus 2 is PV bus, with voltage magnitude specified as 1.04 and 0.25<0<1.0
pu.

16
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Fig. System for Example 3

Table: Line data of example 3

SB | EB R X

{ (pu) (pu)
1 2 | 005 | 015
1 3 | 010 | 030
2 3 | 015 | 045
2 4 [ o010 030
3 4 | 005 | 015

Table: Bus data of example 3

Bus No. P Q Vi
(pu) | (pu)
1 i & 1.04 20"
2 05 | -0.2 =
3 ~10 | os =
4 -03 | -0.1 N

Solution: Note that the data is directly in terms of injected powers at the buses. The

bus admittance matrix is formed by inspection as under:

:"Q 03 199 o ‘ZQ"'J.(.’O, :,!'_Q +J§9 " TR 0 B
Yo = | ~20+36.0 | 3,666 —j11.0 | ~0.666 +j20 | ~1.0+j3.0
BST 10430 -0.666+j2.0 | 3.666-j11.0 | 20 +i6.0
0 ~1.0+ 3.0 -20+j6.0 3.0-j9.0

Case(i): All buses except bus 1 are PQ Buses
Assume all initial voltages tobe 1.0 £ o’ pu.

vi-L |5t
. ";.

% Y:l Vl— = Y:.! Vx" 5 Y:c Vsn ]

17




s [9'5_*10_’2 — 2.0+ j6o)x(1.0420°)

Y. [1.0- joo

—(~0.666 + j2.0)x(1020° - {~1.0+ 3.0)x(1.020" J]
= 1.02014 £ 2.605"

1 [P - ;
A =—[—’—7{&— YW =YaV: -V, v.“}
Y).‘ V)
~1.0- j05
=L |20 JO3 4 04 3.0)x (1.04200))
Y. | 10— joo

—{(~0.666 + j2.0)x (1.02014.22.605 )| - {(-2.0 + j6.0)x (1.0.20" )1]
= 1.03108 £ - 4.831"

| | P, - JjO .
V4l =T[‘_V..-_“ Yn Vx Ex Y«: V; 7T Yu anjl

- 4

_L[0.3+jo.l

Y, !10- joo {-1.0+ j3.0)x(1.02014.22.605" |

~{-20+ j6.0)x(1.03108.2 - 4.831)]
= 1.02467 £ —0.51°

Hence
v, =1.04 20"pu v! =1.02014 £2.605" pu
V! =1.03108 24831 pu V! = 1.02467 2-0.51" pu

Case(ii): Bus 2 is a PV bus whose voltage magnitude is specified as 1.04 pu
We first compute Q.

Q:= "’:l['vll (G:l sind,, — B, cosd :l) E IV:I (G:: sind,, — B, cosd,, )

+ V(G siné , - B, c0s8.,) + |[V,| (G, siné, - B, coss,)]

= 104 [1.04 {-6.0} + 1.04 {11.0}+1.0{— 2.0) + 1.0 [-3.0]= 0.208 pu.

~J-20+ j6.0)x(1.0420" |

. 1 [0.5- jo.208
*T v, 1Loaz0°

—(-0666 + j2.0)x(1.0.20° )| - {~1.0 + j3.0)x(1.020° )|

= 1.051288 + jO.033883

The voltage magnitude is adjusted to 1.04. Hence V,=1.04 2 1.846"




g [-l.o-jo.s

Y.l 1020°

L= — {10+ 3.0)x 1.03200"))

—(~0.666 + j2.0)x (1.04.21.846")} - {(~2.0 + j6.0) x (1.0 20° )]
= 1.035587 2 - 4.951" pu.

v o= L{% —f-10+ j3.0)x(1.0421.846" )}

" y“
~}~2.0+ j6.0)x(1.0355872 - 4.951")} |
=0.9985 2 -0.178"
Hence at end of 1¥ iteration we have:

v, =1.04 20"pu V! =1.04 2£1846" pu

V) =1.035587 £-4.951" pu v! =09985 2 -0.178" pu
Case (iii):Bus 2 is PV bus. with voltage magnitude specified as 1.04 & 0.2520Q2<1 pu.
If 0.25 < Q3 < 1.0 pu then the computed value of Q; = 0.208 is less than the lower
limit. Hence, Q; is set equal to 0.25 pu. Iterations are carried out with this valuc of Q..
The voltage magnitude at bus 2 can no longer be maintained at 1.04. Hence, there is
no necessity to adjust for the voltage magnitude. Proceeding as before we obtain at
the end of first itcration,

v! =104 20"pu V! =1.05635 1849 pu

V! = 1.038546 ~-4.933" pu V! = 1081446 £ 4.896" pu

Limitations of GS load flow analysis:

GS method is very uscful for very small systems. It is casily adoptable, it can be
generalized and it is very cfficient for systems having less number of buses.
However, GS LFA fails to converge in systems with one or more of the features as
under:

* Systems having large number of radial lines

* Systems with short and long lines terminating on the same bus

* Systems having negative values of transfer admittances

* Systems with heavily loaded lines, etc.

GS method successfully converges in the absence of the above problems. However,
convergence also depends on various other set of factors such as: sclection of slack
bus. initial solution, acceleration factor, tolerance limit, level of accuracy of results
nceded, type and quality of computer/ software used, elc.
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NEWTON —RAPHSON METHOIY

Newton-Raphson (NR) method is used to solve a system of non-linear algebraic
equations of the form fix ) =0. Consider a set of n non-linear algebraic equations given
by

Flx, xpeex ) =0 I =LZ. . n (25)
Letx " x,"oox,”. be the initial guess of unknown variables and

Ax", Ax,"......Ar" be the respective comections. Therefore,

Fix A o va xS 4Ar ") =0 i=12..n (26)

The above equation can be expanded using Taylor's senies to give

Filx g x,” }+|:[f|i] ax," +[i]£u':° Foe +{i ]Ax"":|
i, fx, dix,

+ Higher order terms = 0 Yi=1L2..n 27
1] o 1]
Where, i : i P — '?-—' arc the partial derivatives of f; with respect
i, i, iix,

o X,,X,......x, respectively, evaluated at (x,",x,"..........x," ). If the higher order terms

are neglected, then (27) can be written in matrix form as

EANER) a
:'L-l' Exl . r:'x: ) I-T"J.n . _&“o_
=& () (]
: i, dr, il
[ 7+ . . . T |=0 (28)
Ul e (o ) 4

| o, il e, ]
In vector form {28) can be written as
F" 4 J*AX" =0

Or F*=-Js*ax"
Or AX" = _”--|]-|F-:~ 299
And X' =x"+ax" 1300




Here, the matrix [J] is called the Jacobian matrix. The vector of unknown variables is
updated using (30). The process is continued till the difference between two

successive iterations is less than the tolerance value.

NR method for load flow solution in polar coordinates
In application of the NR method. we have to first bring the equations to be solved. to

the form f (x,.x....x,) =0, where x, x...x arc the unknown variables to be
determined. Let us assume that the power system has 1, PV buses and n, PQ buses.
In polar coordinates the unknown variables to be determined are:

(i) 4, . the angle of the complex bus voltage at bus i, at all the PV and PQ buses. This
gives us 1, + n, unknown variables to be determined.

(II)IV_l. the voltage magnitude of bus 7. at all the PQ buses. This gives us n, unknown
variables to be determined.

Therefore, the total number of unknown variables to be computed is:n, + 2n, . for
which we need n, + 2n, consistent equations to be solved. The equations are given

by,

AR, =P - P =0 (31)
A0, =0,,-0,.,=0 (32)
Where P, = Specified active power at bus i

0, ,, = Specified reactive power at bus i

P

.o = Calculated value of active power using voltage estimates.

Q. .., = Calculated value of reactive power using voltage estimates

AP = Active power residuc

AQ = Reactive power residue
The real power is specificd at all the PV and PQ buses. Hence (31) is to be solved at
all PV and PQ buscs leading to #, + n. equations. Similarly the reactive power is
specified at all the PQ buscs. Hence, (32) is to be solved at all PQ buses leading to n,

cquations.




We thus have n, + In, equations to be solved for n, + 2n, unknowns. (31) and (32)
are of the form Fix) = 0. Thus NE method can be applied o solve them. Equations
{313 and (32) can be written in the form of (30) as:

agl 4, 2.4V
Where F.J. .0 .4, are the negated partial derivatives of AP and AQ with respect

o corresponding & nm:lllr"l. The negated partial derivative of AP | is same as the partial

derivative of Pe, since Py is a constant. The various computations involved are

discussed in detail next.

Computation of Pal and Qi

The real and reactive powers can be computed from the load flow equations as:

Blew=F= ilv IVLHGJ cosf, + B, siné,
=

=G, V[ +§|&:Iﬂ|{au cosd, + B, siné | M)

kg

O =0, = YV VilG, sins, ~ B, coss, )
k=1

=-8,|v| +g‘p{|1,r‘||[c-d sind, — B, cosd, ) (35)

b
The powers are computed at any [ +1)" iteration by using the voltages available from

previous iteration. The elements of the Jacobian are found using the above equations

as
Elements of 1)
LA
;!L—-=Z|L{|VJ|{GJ|[—5L|:4~‘}+ B, cosé, |
SUE k=1

L

=-@, - B[

arP .
F‘:Mlﬂliﬂllf—smﬁd][—ll+BIJ{tus=‘dH—]}}
i




Elements of J

fg- = i|v,|v,|(c, cosé, + B, sind, )=P, -G v
cd, =

ko

g:

T —|V,"\"‘|(G.l cosd, + B, sind, )
vl

Elements of J2

P, 2 = 2
Fier—Ilvl = Zl‘ﬂl G, +|V,I;|V‘KG“ cosé, +B,sind, )=P +|‘"| G,
! A:.'

‘P 5
(’1_V;[IV‘| =|‘{|IV. |(G“ cosd, + B, sind )

Elements of J4

I
Wl
g,
Wl

Thus, the lincarized form of the equation could be considered again as:
aP] l'H N .‘;_slﬁﬂ
AQ| M L M

The elements are summarized below:

|V.l= _2l‘,1|:8n + il";'vl I(Gu sind, — B, cosd, )= Q, _IV.I:Bu
i
w

|VI|=lV-||VA KG‘( sind, — B, cosd )

oP 2

DH,=—-= -B,lv|’

O H,=5=-0 v
apP, 3

(i) H, =T‘=a,ﬂ ~be, =|V ||V, NG, siné, - B, cosé, )
o,

: ;
(iii) N, =%‘l|u| =P +G V[

(iv) N, =§5IIV‘|=a‘eI +b,f, =V V.G, cosd , + B, sind, )
*
(v) M~=%=R‘Gh|".|’




5]

(Vi) My === ~aye, + b, f,)=—N,

=

. g, 2
{viil 'L.'.' =—=V,[= Q.' - Bu V;
F11r,l_|l"| |

-

iviii) Ly =%M|=au’. —bie, = Hy

In the above equations,
¥, =G, + jB,
e, + i, =|Vi|(cosé, + jsind,)

And a, + b, =(G, + jB, e, + if,) (36)

If ¥, =0.0+ f0.0(if there is no line between buses § and & ) then the comesponding

off-diagonal clements in the Jacobian matrix will also be zero. Hence, the Jacobian is

also a sparse matrix.

Size of the sub-matrices of the Jacobian: The dimensions of the various sub-

matrices are as per the table below:

Matrix size

H (ny+ngp)= {ng+ng)
N (ny+na)= (n7)
M ()= {mg+ng)

L (ma)= (nz)

1 (mp+2nz)= (ng+2ng)
AP (np+mz)= 1
A nyx= 1
Ad (mp+mzh= 1

IV —r
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ALGORITHM FOR NR METHOD
IN POLAR COORDINATES

1. Formulate the Ygus

2. Assume initial voltages as follows:

V, = ]vu,lzo" (at all PV buses)
vV, =1£0° (at all PQ buscs)
3. At (r+1)" iteration, calculate """ at all the PV and PQ buses and Q""" at all the

PQ buscs, using voltages from previous iteration, V"’ . The formulae to be used are

P =P =G| + ih{lV,KG‘, cosd, + By sind, )
=l

»

Quca =0 = —B,,I'V,l: "’Zan"VAI(Gn sind, — B, cosé )
-l

kn
4. Calculate the power mismatches (power residues)
AR =P —P_ " (at PV and PQ buses)

i

20" =@, -Q,.."" (at PQ buses)
5. Calculate the Jacobian [ /'] usingV,"”" and its clements spread over H, N, M, L

sub- matrices using the relations derived as in (36).

6. Compute
M i

Alvtnl =|J‘“|-‘[API”1|
M 2
7. Update the variables as follows:

8" =8""4+A8'"" (atall buscs)

I

8. Go to step 3 and iterate till the power mismatches are within acceptable tolerance.




DECOUPLED LOAD FLOW

In the NR method, the inverse of the Jacobian has to be computed at cvery iteration.
When solving large interconnected power systems, alternative solution methods are
possible, taking into account certain observations made of practical systems. These

are,

e Change in voltage magnitude |‘C| at a bus primarily affects the flow of reactive

power Q in the lines and leaves the real power P unchanged. This observation

A )
implies that 0 is much larger than L3

] F]

of the sub—mnlrix[N ] which contains terms that arc partial derivatives of real

. Hence, in the Jacobian, the elements

power with respect to voltage magnitudes can be made zero.

e Change in voltage phase angle at a bus, primarily affects the real power flow P
over the lines and the flow of Q is relatively unchanged. This observation implies

P O
that -i—‘ is much larger than%% . Hence, in the Jacobian the elements of the sub-
G 3 ,

matrix [M ] which contains terms that are partial derivatives of reactive power

with respect to voltage phase angles can be made zero.

These observations reduce the NRLF lincarised form of equation to
Ab
AP H 0 VI
" 37
[AQ ] [0 L ﬂl'vl—

From (37) it is obvious that the voltage angle corrections AS are obtained using real
power residues AP and the voltage magnitude corrections [AV| are obtained from
reactive power residues AQ. This equation can be solved through two alternate

strategies as under:




Strategy-1
(i) Calculate AP, AQ"" and 4"
:I:—,m A
() t
(ii) Compute =" [ ,]
| R ot
(iii) Update & and [V].

(iv) Go to step (i) and iterate till convergence is reached.

Strategy-2
(i) Compute AP""' and Sub-matrix H'"). From (37) find A3 "' =[] Ap"’
(ii) Up date & using 6" =48""+ 8",

{ret)

(iii) Use & to calculate AQ"' and 2"’

(iv) Compute _ll =[] 20"

VT
(v)Update, |[v'| = |v""| +|avt)

(vi) Go to step (i) and iterate till convergence is reached.

In the first strategy, the variables are solved simultancously. In the second strategy the

iteration is conducted by first solving for A4 and using updated valucs of &

calculate AM. Hence. the second strategy results in faster convergence. compared to

the first strategy.

FAST DECOUPLED LOAD FLOW

If the cocfficient matrices are constant, the nced to update the Jacobian at every
iteration is climinated. This has resulted in development of fast decoupled load Flow

(FDLF). Here, certain assumptions are made based on the observations of practical

power systems as under:

* By >>Gj; (Since the % ratio of transmission lincs is high in well designed

systems)




e The voltage angle difference (t‘., -8 ,) between two buses in the system is very

small. This mcunscos(ﬁ, -8, )s land sin(ﬁ, =y )=0.0

o 0 <«<Bl|

With these assumptions the clements of the Jacobian become
H, =L, =-v|vi|B, (i k)

H, =1L, =-BJ[

The matrix (37) reduces to

(el o, Joo]
=1v o M
iol-o o | 1]

(38)

Where B, and B, are ncgative of the susceptances of respective elements of the

bus admittance matrix. In (38) if we divide LHS and RHS by IV,I and assume IV,I =1,

we get.

(3] -l Joe
EigE]

(39)

Equations (39) constitute the Fast Decoupled load flow equations. Further

simplification is possible by:
* Omitting effect of phasc shifting transformers

e Sectting off-nominal tums ratio of transformers to 1.0

e In forming B). omitting the cffect of shunt reactors and capacitors which

mainly affect reactive power

® Ignoring serics resistance of lines in forming the Y py,.




With these assumptions we obtain a loss-less network. In the FDLF method, the

matrices [B'] and [8'] arc constants and nced to be inverted only once at the

beginning of the iterations.
REPRESENTATION OF TAP CHANGING TRANSFORMERS

Consider a tap changing transformer represented by its admittance connected in serics

with an ideal autotransformer as shown (a= tums ratio of transformer)

=
E)n:l

N
|

Iq

Fig. 2. Equivalent circuit of a tap setting transformer

|
B

.
L

Fig. 3. m-Equivalent circuit of Fig.2 above.

By equating the bus currents in both the mutually equivalent circuits as above, it can
be shown that the m-equivalent circuit parameters are given by the expressions as
under:

(i) Fixed tap setting transformers (on no load)

A=Ypg/a
B=1/a(l/a-1) Ypq
C=(l-1/a) Ypq




(i) Tap changing under load (TCUL) transformers (on load)
A=Ypq

B=(l/a-1)(1/a+ | - Eq/Ep) Ypq

C=(1-1/a) (Ep/Eq) Ypq

Thus, here, in the case of TCUL transformers. the shunt admittance values arc

observed to be a function of the bus voltages.

COMPARISON OF LOAD FLOW METHODS

The comparison of the methods should take into account the computing time required
for preparation of data in proper format and data processing, programming case,
storage requirements, computation time per iteration, number of iterations, case and
time required for modifying network data when operating conditions change, ete.
Since all the methods presented are in the bus frame of reference in admittance form,
the data preparation is same for all the methods and the bus admittance matrix can be
formed using a simple algorithm. by the rule of inspection. Due to simplicity of the
cquations, Gauss-Scidel method is relatively casy to program. Programming of NR
method is more involved and becomes more complicated if the buses are randomly
numbered. It is casier to program. if the PV buses are ordered in sequence and PQ

buses are also ordered in sequence.

The storage requirements are more for the NR method, since the Jacobian clements
have to be stored. The memory is further increased for NR method using rectangular
coordinates. The storage requirement can be drastically reduced by using sparse
matrix techniques. since both the admittance matrix and the Jacobian are sparse
matrices. The time taken for a single iteration depends on the number of arithmetic
and logical operations required to be performed in a full iteration. The Gauss —Seidel
method requires the fewest number of operations to complete iteration. In the NR
method, the computation of the Jacobian is necessary in every iteration. Further, the
inverse of the Jacobian also has to be computed. Hence. the time per itcration is larger
than in the GS method and is roughly about 7 times that of the GS method, in large
systems, as depicted graphically in figure below. Computation time can be reduced if




the Jacobian is updated once in two or three iterations. In FDLF method, the Jacobian
is constant and needs to be computed only once. In both NR and FDLF methods. the

time per iteration increases directly as the number of buses.

Time units

al
4| NR
2

-+

C_‘gSj,p'
__'__‘_‘___,_4———"
1 L

0 40 80 120 No. of buses

Figure 4. Time per Iteration in GS and NR methods

The number of iterations is determined by the convergence characteristic of the
method. The GS method exhibits a lincar convergence characteristic as compared to
the NR method which has a quadratic convergence. Hence. the GS method requires
more number of iterations to get a converged solution as compared to the NR method.
In the GS method. the number of iterations increases directly as the size of the system
increases. In contrast, the number of iterations is relatively constant in NR and FDLF
methods. They require about 5-8 iterations for convergence in large systems. A
significant increase in rate of convergence can be obtained in the GS method if an
acceleration factor is used. All these variations are shown graphically in figure below.
The number of iterations also depends on the required accuracy of the solution.
Generally, a voltage tolerance of 0.0001 pu is used to obtain acceptable accuracy and
the real power mismatch and reactive power mismatch can be taken as 0.001 pu. Duc
to these reasons, the NR method is faster and more reliable for large systems. The
convergence of FDLF method is geometric and its speed is nearly 4-5 times that of
NR method.
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Time units
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Figure 5. Total time of Iteration in
GS and NR methods

No. of iterations

1200

Figure 6. Influence of acceleration factor
on load flow methods




FINAL WORD

In this chapter. the load flow problem, also called as the power flow problem. has
been considered in detail. The load flow solution gives the complex voltages at all the
buses and the complex power flows in the lines. Though, algorithms are available
using the impedance form of the equations, the sparsity of the bus admittance matrix
and the case of building the bus admittance matrix, have made algorithms using the
admittance form of equations more popular.

The most popular methods are the Gauss-Seidel method, the Newton-Raphson
method and the Fast Decoupled Load Flow method. These methods have been
discussed in detail with illustrative examples. In smaller systems. the casc of
programming and the memory requirements, make GS method attractive. However,
the computation time increases with increase in the size of the system. Hence. in large
systems NR and FDLF mcthods are more popular. There is a trade off between
various requirements like speed. storage, reliability, computation time, convergence
characteristics etc. No single method has all the desirable features. However, NR

method is most popular because of its versatility, reliability and accuracy.
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CHAPTER 1

REPRESENTATION OF POWER SYSTEMS

[CONTENTS: Onc line diagram, impedance diagram. reactance diagram. per unit
quantities, per unit impedance diagram, formation of bus admittance &
impedance matrices, examples]

1.1 One Line Diagram

In practice, electric power systems are very complex and their size is unwieldy. It is very
difficult to rcpresent all the components of the system on a single frame. The
complexitics could be in terms of various types of protective devices, machines
(transformers. generators, motors, ctc.). their connections (star, delta, etc.). ctc. Hence.
for the purpose of power system analysis. a simple single phase cquivalent circuit is
developed called. the one line diagram (OLD) or the single line diagram (SLD). An SLD
is thus, the concise form of representing a given power system. It is to be noted that a
given SLD will contain only such data that are relevant to the system analysis/study
under consideration. For example, the details of protective devices need not be shown for
load flow analysis nor it is nccessary to show the details of shunt values for stability
studics.

Symbols used for SLD

Various symbols are used to represent the different parameters and machines as single
phase equivalents on the SLD.. Some of the important symbols used arc as listed in the
table of Figure 1.

f
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Figure 1. TABLE OF SYMBOLS FOR USE ON SLDS




Example system

Consider for illustration purposc, a sample example power system and data as under:
Generator 1: 30 MVA, 105 KV, X™ 1.6 ohms, Generator 2: 15 MVA, 6.6 KV, X"~
1.2 ohms, Generator 3: 25 MVA, 6.6 KV, X"~ 0.56 ohms, Transformer 1 (3-phasc):

15 MVA, 33/11

MVA, 33/6.2

KV, X=15.2 ohms/phase on HT side, Transformer 2 (3-phasc): 15
KV, X=16.0 ohms/phase on HT side, Transmission Line: 20.5 ohms per

phase, Load A: 15 MW, 11 KV. 0.9 PF (lag): and Load B: 40 MW, 6.6 KV, 0.85 PF
(lag). The corresponding SLD incorporating the standard symbols can be shown as in

figure 2.
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Figure 2. SAMPLE SYSTEM OLD
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It is observed here. that the gencrators are specified in 3-phase MVA, L-L voltage and
per phase Y-cquivalent impedance, transformers are specified in 3-phase MVA, L-L
voltage transformation ratio and per phase Y-cquivalent impedance on any onc side and
the loads are specified in 3-phase MW, L-L voltage and power factor.

1.2 Impedance Diagram

The impedance diagram on single-phase basis for use under balanced conditions can be
casily drawn from the SLD. The following assumptions are made in obtaining the
impedance diagrams.

Assumptions:

1. The single phase transformer equivalents arc shown as ideals with impedances on

appropriate side (LV/HV),

The magnetizing reactances of transformers are negligible,

3. The generators are represented as constant voltage sources with scries resistance or
reactance,

4. The transmission lines are approximated by their equivalent r-Models,

The loads are assumed to be passive and arc represented by a series branch of

resistance or reactance and

6. Since the balanced conditions are assumed, the neutral grounding impedances do not
appear in the impedance diagram.

ta

n

Example system

As per the list of assumptions as above and with reference to the system of figure 2. the
impedance diagram can be obtained as shown in figure 3.
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Figure 3. IMPEDANCE DIAGRAM




1.3 Reactance Diagram

With some more additional and simplifying assumptions. the impedance diagram can be
simplificd further to obtain the corresponding reactance diagram. The following are the
assumptions made.

Additional assumptions:

#» The resistance is often omitted during the fault analysis. This causes a very
negligible error since, resistances are negligible

Loads are Omitted

Transmission line capacitances arc ineffective &

Magnetizing currents of transformers are neglected.

vYVY

Example system

as per the assumptions given above and with reference to the system of figure 2 and
figure 3, the reactance diagram can be obtained as shown in figure 4.
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Figure 4. REACTANCE DIAGRAM

Note: These impedance & reactance diagrams are also refered as the Positive Sequence
Diagrams/ Networks.

1.4 Per Unit Quantities

during the power system analysis, it is a usual practice to represent current. voltage,
impedance, power, etc., of an clectric power system in per unit or percentage of the base
or reference value of the respective quantitics. The numerical per unit (pu) value of any
quantity is its ratio to a chosen base value of the same dimension. Thus a pu value is a
normalized quantity with respect to the chosen base value.

Definition: Per Unit value of a given quantity is the ratio of the actual value in any
given unit to the base value in the same unit. The percent value is 100 times the pu value.
Both the pu and percentage methods are simpler than the use of actual values. Further,
the main advantage in using the pu system of computations is that the result that comes
out of the sum, product. quotient, etc. of two or more pu values is  expressed in per unit



In an clectrical power system, the parameters of interest include the current. voltage,
complex power (VA), impedance and the phase angle. OF these, the phase angle is
dimensionless and the other four quantities can be described by knowing any two of
them. Thus clearly, an arbitrary choice of any two base values will evidently fix the other
base values.

Normally the nominal voltage of lines and equipment is known along with the complex
power rating in MV A. Hence. in practice, the base values are chosen for complex power
{MWVA) and line voltage (KV). The chosen base MV A is the same for all the pans of the
system. However, the base voltage is chosen with reference to a particular section of the
systemn and the other base voltages (with reference to the other sections of the systems,
these sections caused by the presence of the transformers) are then related to the chosen
one by the turns-ratio of the connecting transformer.

If |y is the base current in kilo amperes and Wy, the base voltage in kilovolts, then the base
MVA is, Sy = (Vulp). Then the base values of current & impedance are given by

Base current (kA), Th = MVARKYRL

= Sp'Ve (1.1}
Buase impedance, Zbh= l"n’hﬂg}
=(KVe / MYV Ap) {1.2)
Hence the per unit impedance is given by
Zou = Zohms"Zh .,
= Zohms (MVARKVY ) {1.3)

In 3-phase systems, KVh is the line-to-line value & MV AD is the 3-phase MV A [ -phase
MV A = (143} 3-phase MYAL

Changing the base of a given pu value:
It is observed from equation {3} that the pu value of impedance is proportional directly 1o
the base MVA and inversely 1o the square of the base KV. If Zpy&W is the pu impedance

required to be calculated on a new set of base values: MY AR™W & KVE™Y from the
already given per unit impedance Zpuﬂjd, specificd on the old set of base valucs,
Mvapold & Kvpeld | then we have

ZputeW = Z,,™ (MVA"IMVAS™) (KV, KV (1.4)

On the other hand, the change of base can also be done by first converting the given pu
impedance to its ohmic value and then calculating its pu value on the mew sct of base
values.

Merits and Demerits of pu System

Following are the advantages and disadvantages of adopting the pu system of
computations in electric power systems:

Merits:



# The pu value is the same for both I-phase and & 3-phase systems

# The pu value once expressed on a proper base. will be the same when referced 0
cither side of the transformer. Thus the presence of transformer is totally
climinated

# The variation of values is in a smaller range 9ncarby unity). Hence the errors

involved in pu computations are very less.

Usually the nameplate ratings will be marked in pu on the base of the name plate

ratings, ctc.

v

Demerits:
7 If proper bases are not chosen, then the resulting pu values may be highly absurd
(such as 5.8 pu, -18.9 pu. ctc.). This may causc confusion to the user. However,
this problem can be avoided by sclecting the base MVA near the high-rated

cquipment and a convenient base KV in any section of the system.

1.5 pu Impedance / Reactance Diagram

for a given power system with all its data with regard to the generators, transformers,
transmission lincs, loads, ctc.. it is possible to obtain the corresponding impedance or
reactance diagram as explained above. If the parametric values are shown in pu on the
properly sclected base values of the system, then the diagram is refered as the per unit
impedance or reactance diagram. In forming a pu diagram, the following are the
procedural steps involved:

Obtain the one line diagram based on the given data

Choose a common base MV A for the system

Choose a base KV in any one section (Sections formed by transformers)
Find the base KV of all the sections present

Find pu values of all the parameters: R X. Z_ E, etc.

Draw the pu impedance/ reactance diagram.

T

1.6 Formation Of Ygys_& Zgys

The performance equations of a given power system can be considered in three different
frames of reference as discussed below:

Frames of Reference:
Bus Frame of Reference: There are b independent cquations (b = no. of buses) relating
the bus vectors of currents and voltages through the bus impedance matrix and bus
admittance matrix:

Epus =Zgus laus

Igus = Yaus Epus (1.5)

Branch Frame of Reference: There are b independent equations (b = no. of branches of a
selected Tree sub-graph of the system Graph) relating the branch vectors of currents and
voltages through the branch impedance matrix and branch admittance matrix:

Egp = Zgg la
Ign = Yggp Esn (1.6)



Loop Frame of Reference: There are b independent equations (b = no. of branches of a
selected Tree sub-graph of the system Graph) relating the branch vectors of currents and
voltages through the branch impedance matrix and branch admittance matrix:

Eroop = Zyoop ILoop
Ioop = Yroor ELoop (L.7)

Of the various network matrices refered above, the bus admittance matrix ( Ygus) and the
bus impedance matrix (Zpus) are determined for a given power system by the rule of
inspection as explained next.

Rule of Inspection

Consider the 3-node admittance network as shown in figure5. Using the basic branch
relation: 1 = (YV), for all the elemental currents and applying Kirchhoff's Current Law
principle at the nodal points, we get the relations as under:

Atnode 11 I =Y1Vi+ Yi(V-Vi) + Y6 (V| - V2)
Atnode 2: =YV + Ys(V-Vi) + Y (V2 - V)
Atnode 3: 0=Y3(V3-VI) + Y4Vi+ Ys5(Vi-Va) (1.8)

Va3 Y5
5 Yl Y4 \/2. I!.

Figure 5. EXAMPLE SYSTEM FOR FINDING Ygys

These are the performance equations of the given network in admittance form and they
can be represented in matrix form as:

Ii| = [(Yi+Y34Ys) -Ys -Ya Vi
I| = -Yg (Yr+Ys+Ys) -Ys V2
0 = -Ys3 -Ys (Yi+Y:+Ys) Vi (1.9)

In other words, the relation of equation (9) can be represented in the form
Igus = Yaus Esus (1.10)

Where, Ygus is the bus admittance matrix, Igus & Epus are the bus current and bus
voltage vectors respectively.

By observing the clements of the bus admittance matrix, Ygps of equation (9), it is
obscrved that the matrix clements can as well be obtained by a simple inspection of the
given system diagram:



Diagonal elements: A diagonal clement (Yii) of the bus admittance matrix. Ygus. is equal
to the sum total of the admittance values of all the elements incident at the bus/node i,

Off Diagonal elements: An off-diagonal element (Yj) of the bus admittance matrix, Ypys.
is equal to the negative of the admittance value of the connecting element present
between the buses [ and j, if any.

This is the principle of the rule of inspection. Thus the algorithmic equations for the rule
of inspection arc obtained as:

Ya=Zy; (=12...... .n)
Yi=-y; (=12......n) (1.11)

For i = 1.2....n, n = no. of buses of the given system. yj; is the admittance of element
connected between buses i and j and yii is the admittance of element connected between
bus i and ground (reference bus).

Bus impedance matrix

In cases where, the bus impedance matrix is also required, then it cannot be formed by
direct inspection of the given system diagram. However. the bus admittance matrix
determined by the rule of inspection following the steps explained above, can be inverted
to obtain the bus impedance matrix, since the two matrices arc inter-invertible. Note: It
is to be noted that the rule of inspection can be applied only to those power systems that
do not have any mutually coupled elements.

1.7 Examples

I _EXAMPLES ON RULE OF INSPECTION:

Problem #1: Obtain the bus admittance matrix for the admittance network shown aside

by the rule of inspection
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II_EXAMPLES ON PER UNIT ANALYSIS:

Problem #1:

Two generators rated 10 MVA, 13.2 KV and 15 MVA, 13.2 KV are connected in parallel
to a bus bar. They feed supply to 2 motors of inputs 8 MVA and 12 MVA respectively.
The operating voltage of motors is 12.5 KV. Assuming the base quantitics as 50 MVA,
13.8 KV, draw the per unit reactance diagram. The percentage reactance for generators is
15% and that for motors is 20%.

Solution:
The one line diagram with the data is obtained as shown in figure Pl(a).
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Figure P1(a).
OLD of the given system

Selection of base quantities: SO MV A, 13.8 KV (Given)

Calculation of pu values:

Xgi =j 0.15 (50/10) (13.2/13.8)* = j 0.6862 pu.

XG2=j 0.15 (50/15) (13.2/13.8)° = j 0.4574 pu.

Xuml =j 0.2 (50/8) (12.5/13.8)° = 1.0256 pu.

X2 = 0.2 (50/12) (12.5/13.8)° = j 0.6837 pu.

Egl = Eg = (13.2/13.8) =0.9565 20" pu

Em = Eap = (12.5/13.8) = 0.9058 20° pu

Thus the pu reactance diagram can be drawn as shown in figure Pl(b).
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Flgure P1(b).
Per Unit Reactance Diagram

Problem #2:

Draw the per unit reactance diagram for the system shown in figure below. Choose a base
of 11 KV, 100 MVA in the gencrator circuit.
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Figure P2(a). OLD of the given system

Solution:



The onc line diagram with the data is considered as shown in figure.

Selection of base quantities:

100 MV A, 11 KV in the generator circuit(Given); the voltage bases in other sections are:
11 (115/11.5) = 110 KV in the transmission line circuit and 110 (6.6/11.5) = 6.31 KV in
the motor circuit.

Calculation of pu values:

Xg=i0.1 pu. Xg =] 0.2 (100/90) (6.6/6.31)" = j 0.243 pu.

Xy =X =j 0.1 (100/50) (11.5/11)* =j 0.2185 pu.

Xo =Xut = j 0.1 (100/50) (6.6/6.31)" =j0.219 pu.

Xiines = j 20 (100/110%) = j 0.1652 pu.

Ee = 1.020" pu, Ex=(6.6/6.31)=1.04520" pu

Thus the pu reactance diagram can be drawn as shown in figure P2(b).

0, DI Joan,

Figure P2(b). Per Unit Reactance Diagram

Problem #3:

A 30 MVA, 138 KV, 3-phasc gencrator has a sub transient reactance of 15%. The
generator supplics 2 motors through a step-up transformer - transmission line — step-
down transformer arrangement. The motors have rated inputs of 20 MVA and 10 MVA at
12.8 KV with 20% sub transient reactance cach. The 3-phase transformers are rated at 35
MVA, 13.2 KV-A /115 KV-Y with 10 % lecakage reactance. The line reactance is 80
ohms. Draw the equivalent per unit reactance diagram by sclecting the generator ratings
as base values in the gencrator circuit.



Solution:
The onc line diagram with the data is obtained as shown in figure P3(a).
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Figure P3(a). OLD of the given system

Selection of base quantities:
30 MV A, 13.8 KV in the generator circuit{Given):

The voltage bascs in other sections arc:
13.8(115/13.2) = 120.23 KV in the transmission line circuit and
120.23 (13.26/115) = 13.8 KV in the motor circuit.

Calculation of pu values:

Xg=j0.15 pu.

Xat =j 0.2 (30/20) (12.8/13.8)" = 0.516 pu.

X2 = 0.2 (30/10) (12.8/13.8)° = j 0.2581 pu.

Xy =X =j 0.1 (30/35) (13.2/13.8)° =j 0.0784 pu.
Xiime = j 80 (30/120.23%) = j 0.17 pu.

Ee=1.020" pu; Emi= Ea2 = (6.6/6.31) = 093.20" pu
Thus the pu reactance diagram can be drawn as shown in figure P3(b).



Figure P3(b). Per Unit Reactance Diagram

Problem #4:

A 33 MVA, 138 KV. 3-phasc generator has a sub transient reactance of 0.5%. The
generator supplies a motor through a step-up transformer - transmission line — step-down
transformer arrangement. The motor has rated input of 25 MVA at 6.6 KV with 25% sub
transient reactance. Draw the equivalent per unit impedance diagram by selecting 25
MVA (3¢), 6.6 KV (LL) as basc valucs in the motor circuit, given the transformer and
transmission line data as under:

Step up transformer bank: three single phase units, connected A-Y, cach rated 10 MVA,
13.2/6.6 KV with 7.7 % lecakage rcactance and 0.5 % leakage resistance;

Transmission line: 75 KM long with a positive sequence reactance of 0.8 ohm/ KM and a
resistance of 0.2 ohm/ KM: and

Step down transformer bank: three single phase units, connected A-Y, cach rated 8.33
MVA, 110/3.98 KV with 8% lcakage reactance and 0.8 % lcakage resistance:

Solution:
The one line diagram with the data is obtained as shown in figure P4(a).
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Figure P4(a). OLD of the given system




3-phase ratings of transformers:

Ti: 3(10) = 30 MVA, 13.2/ 66.4V3 KV = 13.2/ 115 KV, X =0.077. R = 0.005 pu.
Ts: 3(8.33)=25MVA, 110/ 3.98V3 KV = 1 10/ 6.8936 KV, X = 0.08. R = 0.008 pu.
Selection of base quantities:

25 MVA, 6.6 KV in the motor circuit (Given); the voltage bases in other sections are: 6.6
(110/6.8936) = 105316 KV in the transmission line circuit and 105.316 (13.2/115) =
12.09 KV in the gencrator circuit.

Calculation of pu values:

Xu =] 0.25 pu: Ep=1.020" pu.

Xg =] 0.005 (25/33) (13.8/12.09)° = 0.005 pu; E, = 13.8/12.09 = 1.414.20" pu.

Zij = 0.005 +j 0.077 (25/30) (13.2/12.09)° = 0.005 + j 0.0765 pu. (ref. to LV side)
Z = 0.008 + j 0.08 (25/25) (110/105.316)° = 0.0087 + j 0.0873 pu. (ref. to HV side)
Ziine = 75 (0.24j 0.8) (25/ 105.316) = 0.0338 + j 0.1351 pu.

Thus the pu reactance diagram can be drawn as shown in figure P4(b).
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CHAPTER 2

SYMMETRICAL THREE PHASE FAULTS

[CONTENTS: Prcamble, transients on a transmission line, short circuit of an unloaded
synchronous machine- short circuit currents and reactances, short circuit of a loaded
machine, selection of circuit breaker ratings, examples)

2.1 Preamble

in practice, any disturbance in the normal working conditions is termed as a FAULT. The
effect of fault is to load the device electrically by many times greater than its normal
rating and thus damage the equipment involved. Hence all the equipment in the fault line
should be protected from being overloaded. In general, overloading involves the increase
of current up to 10-15 times the rated value. In a few cascs, like the opening or closing of
a circuit breaker., the transient voltages also may overload the equipment and damage
them.

In order to protect the equipment during faults, fast acting circuit breakers arc put in the
lines. To design the mating of these circuit breakers or an auxiliary device, the fault
current has to be predicted. By considering the equivalent per unit reactance diagrams,
the various faults can be analyzed to determine the fault parameters. This helps in the
protection and maintenance of the equipment.

Faults can be symmetrical or unsymmetrical faults. In symmetrical faults, the fault
quantity rises 1o several times the rated value equally in all the three phases. For example,
a 3-phasc fault - a dead short circuit of all the three lines not involving the ground. On the
other hand. the unsymmetrical faults may have the connected fault quantities in a random
way. However, such unsymmetrical faults can be analyzed by using the Symmetrical
Components. Further, the neutrals of the machines and equipment may or may not be
grounded or the fault may occur through fault impedance. The three-phase fault involving
ground is the most severe fault among the various faults encountered in clectric power
systems.

2.2 Transients on a transmission line

Now., let us Consider a transmission line of resistance R and inductance L supplied by an
ac source of voltage v. such that v = V; sin (wt+a) as shown in figure 1. Consider the
short circuit transicnt on this transmission linc. In order to analyze this symmetrical 3-
phase fault, the following assumptions are made:

7 The supply is a constant voltage source,
7 The short circuit occurs when the line is unloaded and



# The line capacitance is negligible.
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Figure 1. Short Circuit Transients on an Unloaded Line.

Thus the line can be modeled by a lumped R-L series circuit. Let the short circuit take
place at t=0. The parameter. a controls the instant of short circuit on the voltage wave.
From basic circuit theory, it is observed that the current after short circuit is composed of
the two parts as under: i =i; +i, Where, is is the steady state current and iy is the transient
current. These component currents are determined as follows.

Consider. v = Vg, sin (ot+a)

=iR + L (di/dt) .1
and i =1, sin (ot+a-0) (22)
Where Vin=V2V; Ig=\2L Zgy = VIR*oL)}= tan(0L/R)  (23)
Thus i, = [V/Z] sin (mt+a-0) (24)

Consider the performance equation of the circuit of figure | under circuit as:
iR+ L(di/dt)=0
ie., (R/L +d/dt)i =0 (2.5)

In order to solve the equation (5). consider the complementary function part of the
solutionas: CFE=C; ¢ (2.6)

Where 1 (= L/R) is the time constant and Cy is a constant given by the valuc of steady
state current at t = 0. Thus we have,

C, =-is(0)
= - [Vo/Z] sin (a-0)
= [Vw/Z] sin (6-a) 2.7)
Similarly the expression for the transient part is given by:
iy = -is(0) ¢
= [Vw/Z] sin (0-a) ™ (2.8)

Thus the total current under short circuit is given by the solution of equation (1) as
[combining equations (4) and (8)].



i =is +i|
= [V2V/Z] sin (@t+a-0) + [V2V/Z] sin (B-a) ¢ *-* (2.9)

Thus, is is the sinusoidal steady state current called as the symmetrical short circuit
current and i; is the unidirectional value called as the DC off-set current. This causes the
total current to be unsymmetrical till the transient decays, as clearly shown in figure 2.
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i

Figure 2. Plot of Symmetrical short circuit current, i(t).

The maximum momentary current. imm thus corresponds to the first peak. Hence, if the
decay in the transient current during this short interval of time is neglected, then we have
(sum of the two peak values);

iqm = [V2V/Z] sin (0-ct) + [V2V/Z] (2.10)

now, since the resistance of the transmission line is very small, the impedance angle 0,
can be taken to be approximately equal to 90" Hence, we have

imm = [N2V/Z] cos a + [V2V/Z] (2.11)



This value is maximum when the value of @ is equal to zero. This value corresponds to
the short circuiting instant of the voltage wave when it is passing through zero. Thus the
final expression for the maximum momentary current is obtained as:

imm = 2 [V2V/Z] (2.12)

Thus it is observed that the maximum momentary current is twice the maximum value of
symmetrical short circuit current. This is refered as the doubling effect of the short circuit
current during the symmetrical fault on a transmission line.

2.3 Short circuit of an unloaded synchronous machine

2.3.1 Short Circuit Reactances

Under steady state short circuit conditions, the armature reaction in synchronous
generator produces a demagnetizing effect. This effect can be modceled as a reactance, X,
in series with the induced emf and the leakage reactance, X of the machine as shown in
figure 3. Thus the equivalent reactance is given by:

Xg=X, +X (2.13)

Where Xd is called as the direct axis synchronous reactance of the synchronous machine.
Consider now a sudden three-phase shornt circuit of the synchronous gencrator on no-load.
The machine expericnces a transicnt in all the 3 phases. finally ending up in steady state
conditions.
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Figure 3. Steady State Short Circuit Model

Immediately after the short circuit, the symmetrical short circuit current is limited only by
the leakage reactance of the machine. However, to encounter the demagnetization of the
armature short circuit current, current appears in ficld and damper windings. assisting the
rotor field winding 1o sustain the air-gap flux. Thus during the initial part of the short
circuit. there is mutual coupling between stator, rotor and damper windings and hence the
corresponding cquivalent circuit would be as shown in figure 4. Thus the equivalent
reactance is given by:

Xa™ = X1+ 1/Xa + X+ 1/ Xdu]" (2.19)



Where Xy 1s called as the sub-transient reactance of the synchronous machine. Here, the
equivalent resistance of the damper winding is more than that of the rotor field winding.
Hence, the time constant of the damper field winding is smaller. Thus the damper ficld
effects and the eddy currents disappear after a few cycles.

5T Rh.

Figure 4. Model during Sub-transient Period of Short Circuit

In other words. Xgw gets open circuited from the model of Figure 5 to yicld the model as
shown in figure 4. Thus the equivalent reactance is given by:

Xa' = X1 +[1/Xa + 1UXe )" (2.15)

Where Xy" i1s called as the transient reactance of the synchronous machine.
Subsequently. Xy also gets open circuited depending on the field winding time constant
and yiclds back the steady state model of figure 3.

P

Figure 5. Model during transient Period of Short Circuit

Thus the machine offers a time varying reactance during short circuit and this value of
reactance varies from initial stage to final one such that:  Xd > Xd" > Xd*

2.3.2 Short Circuit Current Oscillogram

Consider the oscillogram of short circuit current of a synchronous machine upon the
occurrence of a fault as shown in figure 6. The symmetrical short circuit current can be
divided into three zones: the initial sub transient period, the middle transient period and
finally the steady statc period. The corresponding reactances, Xd.” Xd' and Xd
respectively, are offered by the synchronous machine during these time periods.
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Figure 6. SC current Oscillogram of Armature Current.

The currents and reactances during the three zones of period are related as under in terms
of the intercepts on the oscillogram (oa, ob and oc are the y-intercepts as indicated in
figure 6):

RMS value of the steady state current = 1 = [oa/V2] = [Eg/X4]
RMS value of the transicnt current = I = [ob/V2] = [Eg/X4']
RMS value of the sub transient current = I = [oc/\2] = [EgX47]  (2.16)

2.4 short circu oaded ma

In the analysis of section 2.3 above, it has been assumed that the machine operates at no
load prior to the occurrence of the fault. On similar lines, the analysis of the fault
occurring on a loaded machine can also be considered.

Figure 7 gives the circuit model of a synchronous generator operating under steady state
conditions supplying a load current I to the bus at a terminal voltage V.. E; is the induced
emf under the loaded conditions and X4 is the direct axis synchronous reactance of the
gencrator.
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Figure 7. Circuit models for a fault on a loaded machine.



Also shown in figure 7, are the circuit models to be used for short circuit current
calculations when a fault occurs at the terminals of the generator. for sub-transient current
and transient current values. The induced emf values used in these models are given by
the expressions as under:

Eg = Vi +j I1X4 = Voltage behind syn. reactance
Eg™= Vi+j I1Xy" = Voltage behind transient reactance
E;= V, +] I Xg" = Voltage behind subtr. Reactance (2.17)

The synchronous motors will also have the terminal emf values and reactances. However.
then the current direction is reversed. During short circuit studies, they can be replaced by
circuit models similar to those shown in figure 7 above. except that the voltages are given
by the relations as under:

Em = Vi -j I1Xa = Voltage behind syn. reactance
En'= Vi - j 1 X4" = Voltage behind transient reactance
Ep“= V,-j 11 Xy" = Voltage behind subtr. Reactance (2.18)

The circuit models shown above for the synchronous machines are also very uscful while
dealing with the short circuit of an interconnected system.

2.5 Selection of circuit breaker ratings

For selection of circuit breakers, the maximum momentary current is considered
corresponding to its maximum possible value. Later, the current to be interrupted is
usually taken as symmetrical short circuit current multiplied by an empirical factor in
order to account for the DC off-set current. A value of 1.6 is usually sclected as the
multiplying factor.

Normally, both the generator and motor reactances are used to determine the momentary
current flowing on occurrence of a short circuit. The interrupting capacity of a circuit
breaker is decided by Xy for the gencrators and X" for the motors.

2.6 Examples

Problem #1: A transmission line of inductance 0.1 H and resistance 5 Q is suddenly
short circuited at t = 0, at the far end of a transmission linc and is supplied by an ac
source of voltage v = 100 sin ( 100nt+15").  Write the expression for the shont circuit
current, i(t). Find the approximate value of the first current maximum for the given
values of o and ©. What is this value for a=0, and 8=90"? What should be the instant of
short circuit so that the DC offset current is (i)zero and (ii)maximum?



Solution:
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Figure PI.

Consider the expression for voltage applicd to the transmission system given by
v = Vasin(at+a) = 100 sin (1007t+15")
Thus we get: Vp=100volts: f=50Hz and a= 15",
Consider the impedance of the circuit given by:
Z=R+joL =5+j(100x)(0.1) =5+j31.416 ohms.
Thus we have: Z, =31.8113 Ohms: 0=80.957" and t=1/R=0.1/5=0.02 seconds.
The short circuit current is given by:
i(t) = [V/Z] sin (@t+a-0) + [Va/Z] sin (8-a) e- "
=[100/31.8113] [sin (100nt+15"-80.957") + sin(80.957"-15") ¢ 0%
= 3.1435s5in(314.16 t - 65.96) +2.871 e
Thus we have:
D) iem=3.14354+2871c

where tis the time instant of maximum of symmetrical short circuit current. This instant
occurs at (314.16 1 — 65.96") = 90" ; Solving we get. t = 0.00867 scconds so that iy = 5
Amps.

ii) imm=2Va/Z = 6.287 A; for a=0, and 0=90" (Also, imm = 2(3.1435) = 6.287 A)
iiii) DC offset current = [V /Z] sin (0-a) e-®H

= zero, if (0-a)=zcro, ic, 0 =aqa, or o = 80.957"

= maximum if (0-a)=90", ic.a=0-90", or a=-9.043"

Problem #2: A 25 MVA, Il KV. 20% generator is connected through a step-up
transformer- T} (25 MVA, 11/66 KV, 10%), transmission line (15% rcactance on a base
of 25 MVA, 66 KV) and step-down transformer-T2 (25 MVA, 66/6.6 KV, 10%) to a bus
that supplics 3 identical motors in parallel (all motors rated: 5 MVA, 6.6 KV, 25%). A
circuit breaker-A is used ncar the primary of the transformer Ty and breaker-B is used
necar the motor M. Find the symmetrical currents to be interrupted by circuit breakers A
and B for a fault at a point P. near the circuit breaker B.



Solution:

Consider the SLD with the data given in the problem statement. The base values arc
sclected as under:
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Figure P2(a)
Selection of bases:

Sp = 25 MVA (common); Vi, = 11 KV (Gen. circuit)- chosen so that then Vi, = 66 KV
(line circuit) and Vy = 6.6 KV (Motor circuit).

Pu values:
Xz=i0.2 pu, Xy =Xp=j0.1 pu: X =Xpr=Xz3=j0.25(25/5)=j 1.25 pu: Xjp=j0.15 pu.

Since the system is operating at no load, all the voltages before fault are | pu
Considering the pu reactance diagram with the faults at P, we have:
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Figure P2(b)

Current to be interrupted by circuit breaker A = 1.0 /j[0.240.1+0.15+0.1]
=-j 1818 pu=-j 1818 (25/V3(11)]) =- j 1.818 (1.312) KA = 2.386 KA
And Current to be interrupted by breaker B = 1/j1.25=-j 0.8 pu
= - j0.8 (25/[N3(6.6)]) = - j0.8 (2.187) KA = 1.75 KA.



Problem #3: Two synchronous motors are connected to a large system bus through a
short linc. The matings of the various components are: Motors(cach)= | MVA. 440 volts,
0.1 pu reactance: line of 0.05 ohm reactance and the short circuit MV A at the bus of the
large system is 8 at 440 volts. Calculate the symmetrical short circuit current fed into a
three-phase fault at the motor bus when the motors are operating at 400 volts.

Solution:

Consider the SLD with the data given in the problem statement. The base values are
sclected as under:
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Figure P3.

Sk =1 MVA: Vi = 044 KV (common)- chosen so that Xmlcach)=j0.1 pu. Em = I.OAOD.
Xiine=i0.05 (1/0.44%) = j 0.258 pu and Xlarge-system -= (1/8) = j 0.125 pu.

Thus the prefault voltage at the motor bus; V= 0.4/0.44 = 0.909 20",
Short circuit current fed to the fault at motor bus (Ir=YV):
Iy =[0.125 + 0.258]" + 2.0 J0.909 =[20.55 pu] [1000/V3(0.4))]
=20.55(1.312) KA = 26.966 KA.

Problem #4: A gencrator-transformer unit is connected to a line through a circuit
breaker. The unit ratings are: Gen.: 10 MVA, 6.6 KV. X" = 0.1 pu. X¢" = 0.2 pu and X4
= 0.8 pu: and Transformer: 10 MVA. 6.9/33 KV. X) = 0.08 pu: The system is opcrating
on no-load at a linc voltage of 30 KV, when a three-phase fault occurs on the line just
beyond the circuit breaker. Determine the following:

(i) Initial symmetrical RMS current in the breaker.

(ii) Maximum possible DC off-set current in the breaker.
(iii) Momentary current rating of the breaker.

(iv) Current to be interrupted by the breaker and the interrupting KVA and

(v) Sustained short circuit current in the breaker.

Solution:

Consider the base valucs sclected as 10 MVA, 6.6 KV (in the gencrator circuit) and
6.6(33/6.9) = 31.56 KV(in the transformer circuit). Thus the base current is:

Iy = 10/ [V3(31.56)] = 0.183 KA

The pu values are: Xg” = 0.1 pu. Xg" = 0.2 pu and X4 = 0.8 pu: and X1, = 0.08 (6.9/6.6)°
= 0.0874 pu: Vi = (30/31.6) = 0.95.20" pu.
Initial symmetrical RMS current = 0.95.20" / [0.1 + 0.0874] = 5.069 pu = 0.9277 KA:
Maximum possible DC off-sct current = 2 (0.9277) = 1.312 KA:
Momentary current rating = 1.6(0.9277) = 1.4843 KA: (assuming 60% allowance)
Current to be interrupted by the breaker (5 Cycles) = 1.1(0.9277) = 1.0205 KA:
Interrupting MV A = 3(30) (1.0205) = 53.03 MVA:
Sustained short circuit current in the breaker = 0.9520° (0.183) 7 [0.8 + 0.0874]

=0.1959 KA.



CHAPTER 3: SYMMETRICAL COMPONENTS

[CONTENTS: Introduction, The a operator, Power in terms of sy wal comy Phuse shiftin Y-
A transformer banks, Unsymmetrical series imped: Seq mped Seq
networks, Sequence networks of an unloaded e . Seq networks of elements.

Sequence networks of power system]

3.1 INTRODUCTION

Power systems arc large and complex three-phase systems. In the normal operating
conditions, these systems are in balanced condition and hence can be represented as an
cquivalent single phase system. However, a fault can cause the system to become
unbalanced. Specifically, the unsymmetrical faults: open circuit, LG. LL, and LLG faults
causc the system to become unsymmetrical. The single-phase equivalent system method
of analysis (using SLD and the reactance diagram) cannot be applied to such
unsymmetrical systems. Now the question is how to analyze power systems under
unsymmetrical conditions? There are two methods available for such an analysis:
Kirchhoff's laws mecthod and Symmetrical components method.

The method of symmetrical components developed by C.L. Fortescue in 1918 is a
powerful technique for analyzing unbalanced three phase systems. Fortescue defined a
lincar transformation from phasc components to a new sct of components called
symmetrical components. This transformation represents an unbalanced three-phase
system by a sect of three balanced three-phase systems. The symmetrical component
method is @ modeling technique that permits systematic analysis and design of three-
phase systems. Decoupling a complex three-phase network into three simpler networks
reveals complicated phenomena in more simplistic terms.

Consider a sct of three-phase unbalanced voltages designated as V,, Vi and V.
According to Fortescue theorem, these phase voltages can be resolved into following
three sets of components.

1. Positive-sequence components, consisting of three phasors equal in magnitude,
displaced from cach other by 120% in phase, and having the same phase sequence as
the original phasors. designated as V;, V. and Vi
Negative-sequence components, consisting of three phasors equal in magnitude,
displaced from cach other by 120" in phase. and having the phase sequence opposite
to that of the original phasors, designated as V., Vi, and V3
3. Zero-sequence components, consisting of three phasors equal in magnitude, and with
zero phase displacement from cach other, designated as V., Vio, and Vo
Since cach of the original unbalanced phasors is the sum of its components, the
original phasors expressed in tems of their components are
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Va=Va+Va+Va
Vb= Vbl + Via + Vo
Ve=Vea +Va + Vo (3.1)



The synthesis of a set of three unbalanced phasors from the three sets of symmetrical
components is shown in Figurel.
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Figure 3.1 Graphical addition of symmetrical components
To obtain unbalanced phasors.

3.2 THE OPERATOR ‘a’

The relation between the symmetrical components reveals that the phase displacement
among them is cither 120" or 0" Using this relationship, only three independent
components is sufficient to determine all the nine components. For this purpose an
operator which rotates a given phasor by 120"in the positive direction (counterclockwise)
is very useful. The letter “a’ is used to designate such a complex operator of unit
magnitude with an angle of 120°. 1t is defined by

a=12120"= -0.5 +j 0.866 (3.2)



If thc operator ‘a’ is applied to a phasor twice in succession, the phasor is rotated lhrough
240", Similarly, three successive applications of *a’ rotate the phasor through 360",

To reduce the number of unknown guantities, let the symmetrical components of
Vb and V¢ can be expressed as product of some function of the operator a and a
component of V, Thus,

Vhi= a2 Vy Vig=aVa Vo= Via
Va=a Vy Vd=a Va V=V
Using these relations the unbalanced phusors can be written as

Vy=Vap+Vy+ Ve
2
Ve=Vao+ a Vi + ﬂ,Vl'.'
Ve=Vgp+aVy+aVy (3.3)

In matrix form,

1
uw|l=|1 @ a v, (34)
1

v, L | N R
Lt Vp=|w|: Vs=|v,|: A=|1 @ a (3.5)
v, v, } ‘a4
The inverse of A matrix is
11 1
A'=4t1 a & (3.6)

I"a’ a
With these definitions. the above relations can be written as

V,=AVy  v,=aly, (3.7)
Thus the symmetrical components of V,, V;, and V, arc given by

=13 (V,+Vp+Vo) i
Va=13(Va+ aTVH- aVe)
=13 (Vy+a“Vy+ aVy) (3.8)

Since the sum of three balanced voltages is zero, the zero-sequence component voltage in
a balanced three-phase system is always zero. Further. the sum of line voltages of even an
unbalanced three-phase system is zero and hence the comresponding zero-sequence
component of line voltages.



NUMERICAL EXAMPLES

Example 1 :o'l‘hc line currents in a 3-ph 4 —wire system arc la = 100<30"; 1b = 50<300";
Ic = 30<180 . Find the symmetrical components and the neutral current.

Solution:
la0 = 13(la+lb+lc) =2729<47A
lal = /3 (la+alb+a2lc) =57.98< 433 A
la2 = 3 la+a2lb+alc)=15.96< 249" A
In =la+tb+ic=31la0 = 51.87<4.7 A

Example 2: The sequence component voltages of phase voltages of a 3-ph system are:
Va0 = 100 <00 V: Val = 223.6 <-26.60 V ; Va2 = 100 <1800 V. Determine the phase
voltages.

Solution:
Va= Va0 + Val + Va2 =223.6<-2660V
Vb = Va0 + a2Val + aVa2 =213 <-99.90 V
Ve = Va0 + a Val + a2 Va2 = 338.6 <66.20V

Example 3: The two seq. componcnl% and the com:spot‘}ding phase voltage of a 3-ph
system are Va0 =1<-60 V: Val=2<0 V: & Va=3 <0 V. Determine the other phase
voltages.

Solution:
Va=Va0 + Val + Va2
Va2 = Va- Va0 - Val =1 <60” v
Vb= Va0 +a2Val +aVa2= 3<-120" v
Ve= VaO+a Val +a2Va2=0V

Exam:{:g 4: Determine the sequence components if Ia =10<60" A; 1b =10<-60 A: Ic =
10 <I80° AL

Solution:
1a0 = 1/3(la+ Ib+ Ic) =0A
lal = I/3(la+alb+allc) =10<60" A
la2=1/3(la+a2lb+alc) =0A
Observation: If the phasors are balanced, two sequence components will be zero.

Example 5: Determine the sequence components if Va = 100 <30 v; Vb = 100
<150"V & Ve=100<90" V.

Solution:
Va0 = 1/3(Va+ Vb + Vc) =0V
Val=1/3(Va+aVb+a2Vc) =0V
Va2=1/3(Va+a2Vb+aVc) = 100<30° v

Observation: If the phasors are balanced, two sequence components will be zero.



Example 6: The line b of a 3-ph line fcccéing a balanced Y-éoad with neutral grounded is
open resulting in line currents: Ia = 10<0 A & Ic = 10<120° A. Determine the sequence
current components.

Solution:
b =0A.
120 = 173(Ta + Ib + Ic) =3.33<60" A
lal = 13(la+alb+a2lc) =6.66<0" A
la2=1/3(la+a2lb+al) =3.33<60 A

Example 7: One conductor of a 3-ph line feeding a balanced delta-load is open.
Assuming that line ¢ is open. if current in line a is 10<00 A | determine the sequence
components of the line currents.

Solution: 2 a

Ic=0A; la=10<0 A. =21b=10<120 A

1a0 = 1/3(la+ Ib+ Ic) 0A

lal = I3(Ja+alb+a2ic) = 5.78<-30° A

la2=1A3(la+a2lb+al) = 578<30° A
Note: The zero-sequence components of line currents of a delta load (3-ph 3-wire) system
arc zero.

3.3 POWER IN TERMS OF SYMMETRICAL COMPONENTS
The power in a three-phase system can be expressed in terms of symmetrical components
of the associated voltages and currents. The power flowing into a three-phase system
through three lines a. b and ¢ is

S=P+jQ=V,L +VpIy +V I~ (3.9)

where V, . Vyand V. are voltages to ncutral at the terminals and 1, I, and I, are the
currents flowing into the system in the three lines. In matrix form

T

I a Va 1 a
5 =[b" v, V 1 bl = Vb l b
] |v.||L

Thus = X
S=[A V] [Al]

Using the reversal rule of the matrix algebra
s=Vv'ATA'Y

Noting that AT=Aand @ and a’arc conjugates,



1 @ al|ll a &
g al
aa‘la‘al
a2

or, since AT A* is equal to 3U where U is 3x3 unit matrix

s=3[w, v

Thus the complex three-phase power is given by
S=Vilh +Vohh +Vek =3Valp+3Valay+3Vala (3.10)

Here, 3Vl 3Vaila and 3Vl correspond to the three-phase power delivered to the
zero-sequence  system,  positive-sequence  system, and  negative-scquence  system,
respectively. Thus., the total three-phase power in the unbalanced system is equal to the
sum of the power delivered to the three sequence systems representing the three-phase
system.

34 PHASE SHIFT OF COMPONENTS IN Y-A TRANSFORMER BANKS

The dot convention is used to designate the terminals of transformers. The dots are placed
at onc end of cach of the winding on the same iron core of a transformer to indicate that
the currents flowing from the dotted terminal to the unmarked terminal of cach winding
produces an mmf acting in the same direction in the magnetic circuit. In that case, the
voltage drops from dotted terminal to unmarked terminal in cach side of the windings arc
in phase.

The HT terminals of three-phase transformers are marked as H1, H2 and H3 and the

corresponding LT side terminals are marked X1, X2 and X3. In Y-Y or A-A transformers,

the markings are such that voltages to neutral from terminals H1, H2, and H3 are in phase

with the voltages to neutral from terminals X1, X2, and X3, respectively. But, there will

be a phase shift (of 30") between the corresponding quantitics of the primary and

secondary sides of a star-delta (or delta-star) transformer. The standard for connection

and designation of transformer banks is as follows:

I. The HT side terminals are marked as HI, H2 and H3 and the corresponding LT side
terminals are marked X 1. X2 and X3.

2. The phases in the HT side are marked in uppercase letters as A, B, and C. Thus for
the sequence abe. A is connected to HI. B to H2 and C to H3. Similarly, the phases in
the LT side are marked in lowercase letters as a. b and c.

3. The standard for designating the terminals H1 and X1 on transformer banks requires
that the positive-sequence voltage from H1 to neutral lead the positive sequence
voltage drop from X1 to neutral by 30" regardless of the type of connection in the HT



and LT sides. Similarly. the voltage drops from H2 to ncutral nnél H3 to necutral lead
their corresponding values, X2 to neutral and X3 to neutral by 30,
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Figure 3.2 Wiring diagram and voltage phasors of a Y-A transformer
With Y connection on HT side.

Consider a Y- A transformer as shown in Figure a. The HT side terminals H1, H2, and
H2 are connccted to phases A. B, and C, respectively and the phase sequence is ABC.
The windings that are drawn in parallel directions are those linked magnetically (by being
wound on the same core). In Figure a winding AN is the phase on the Y-side which is
linked magnetically with the phase winding be on the A side. For the location of the dots
on the windings V y is in phase with V.. Following the standards for the phase shift, the
phasor diagrams for the sequence components of voltages are shown in Figure b, The
sequence component of V ax; is represented as Vy, (leaving subscript *y’ for convenience
and all other voltages to neutral are similarly represented. The phasor diagram reveals
that Vyu; leads Vi, by 30", This will enable to designate the terminal to which b is
connected as X1. Inspection of the positive-sequence and ncgative-sequence phasor
diagrams revels that V,, leads V4, by 90" and V3 lags V., by 90",

From the dot convention and the current directions assumed in Figure a, the phasor
diagram for the sequence components of currents can be drawn as shown in Figure c.
Since the direction specified for Iy in Figure a is away from the dot in the winding and the
direction of I is also away from the dot in its winding, 1 and Iy, are 180° out of phase.
Hence the phase relation between the Y and A currents is as shown m Figure c. From this
diagram. it can be seen that I, leads 14 by 90" and 1> lags 14 by 90" Summarizing
these relations between the symmetrical components on the two sides of the transformer
gives:
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Figure 3.3 Current phasors of Y-A transformer with Y connection on HT side.

Vai=+j Vai Li=+1a

Va2 =-jVaz Li=-jla (3.11)
Where cach voltage and current is expressed in per unit. Although, these relations are
obtained for Y- A transformer with Y connection in the HT side, they are valid even
when the HT side is connected in A and the LT side in Y.

NUMERICAL EXAMPLES

Example 8: Three identical resistors are Y-connected to the LT Y-side of a delta-star
transformer. The voltages at the resistor loads are Vabl = 0.8 pu., WVbel=1.2 pu., and
IVcal=1.0 pu. Assume that the neutral of the load is not connected to the neutral of the
transformer secondary. Find the line voltages on the HT side of the transformer.

Solution: 5
Assuming an angle of 180" for Vea, find the angles of other voltages

Vab =0.8<82.8"
Vbe = l.2<-4l.61 pu
Vea = 1.0<180 pu

The symmetrical components of line voltages are

Vab0 = 173 (Vab +Vbe + Vea) =0 g
Vabl = 1/3 (Vab +aVbc + a2Vca) = 0.985<73.6 ;’
Vabl = 173 (Vab +a2Vbc + aVeca) = 0.235<2203 V

Since Vanl = Vabl. <-3(())" and Van2 = Vab2<30"
Vanl = 0.985<73.6-30
= 0.985<43.60° pu (L-L basc)
Van2 = 0.235<220.3"4+30
=0.235<250.3" pu(L-L base)

Since cach resistor is of 1.0<0 pu. Impedance.
lanl = (Vanl/Z) = 0.985<43.6"pu.



lan2 = (Van2/Z) = 0.235<250.3" pu.

The directions are +ve for currents from supply toward the delta primary and away from
the Y-side toward the load. The HT side line to neutral voltages are

VAl =-j Val = 0.985<-46.4"
VA2 = +j Va2 = 0.235<- 19.7"0
VA = VAI VA2 = 1.2<-41.3" pu.

VBI1 = a2VAlI and 0VB2=nVA2
VB =VBI + VB2 = <180 pu.
VC1=a VAl and VC2 =a2VA2

VC = VCI + VC2 = 0.8<82.9" pu.
The HT side line voltages are

VAB = VA-VB = 2.06(-2‘.’.62 pu. (L-N base)
=(1/3) VAB = 1.19<-22.6" pu. (L-L base)

VBC = VB-Vc  =1.355<215.8" pu. (L-N basc)
= (13) VBC  =0.782<215.8" pu. (L-L basc)

VCA = VC-VA =1.78<I |6.9°5m. (L-N base)
=(1/3) VCA =1.028<116.9 pu. (L-L basc)

3.5 UNSYMMETRICAL IMPEDANCES

Figure 3.4 Portion of three-phase system representing three
unequal series impedances.

Consider the network shown in Figure. Assuming that there is no mutual impedance
between the impedances Za. Zb, and Zc, the voltage drops Vaa®, vbb’, and Vee® can be
expressed in matrix form as



1

0
ol (3.12)
Zl

0
Z
0

-

Vi V4
Ve l=10
V.. 0 i

And in terms of symmetrical components of voltage and current as

Vau] [2. 0 © i
Alv|=|l0o z of a1, (3.13)
v..| lo o z )

If the three impedances are equal ( i.c.. if Za = Zb = Zc), Eq reduces to

Var1 =7, Ly: V=75 1% Vao=2,1x9 (3.14)
Thus, the symmetrical components of unbalanced currents flowing in balanced scries
impedances (or in a balanced Y load) produce voltage drops of like sequence only.

However. if the impedances are uncqual or if there exists mutual coupling, then voltage
drop of any one sequence is dependent on the currents of all the sequences.

g
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Figure 3.5 Sequence impedances of a Y-connected load.

NUMERICAL EXAMPLES

Example 9: A Y-connected source with phase voltages Vag = 277<0", Vbg = 260<-120"
and Veg =295<1 15%is applicd to a balanced A load of 30<40°QIphnsc through a line of
impedance 1<85” Q. The neutral of the source is solidly grounded. Draw the sequence
networks of the system and find source currents.

Solution:
Va0 = 1591<62.110V

Val =277.1<-1.70 V

Va2 =9.22<216.70 V

Y cq. of A load = 10<400 C¥/phase
Zline = 1<850 Q.

Zneutral =0

120 = 0<00 A
lal =25.82<-45.60 A
1a2 = 0.86<172.80 A

Ia =25.15<46.80 A
Th =25.71<196.40 A
Ic =26.62<73.80 A
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3.6 SEQUENCE IMPEDANCES AND SEQUENCE NETWORKS

The impedance of a circuit to positive-sequence currents alone is called the impedance to
positive-sequence current or simply positive-sequence impedance, which is generally
denoted as Z). Similarly, the impedance of a circuit to negative-sequence currents alone
is called the impedance to negative-sequence current or simply negative-sequence



impedance, which is gencrally denoted as Z>. The impedance of a circuit to zero-
sequence currents alone is called the impedance to zero-sequence current or simply zero-
sequence impedance, which is gencrally denoted as Zp. In the analysis of an
unsymmetrical fault on a symmetrical system, the symmetrical components of the
unbalanced currents that are flowing are determined. Since in a balanced system, the
components currents of one sequence cause voltage drops of like sequence only and are
independent of currents of other sequences, currents of any onc sequence may be
considered to flow in an independent network compaosed of the generated voltages. if any.
and impedances to the current of that sequence only.

The single-phase equivalent circuit consisting of the impedances to currents of any one
sequence only is called the sequence network of that particular sequence. Thus. the
sequence network corresponding to  positive-sequence current is called the positive-
sequence network. Similarly. the sequence network corresponding to negative-sequence
current is called negative-sequence network, and that corresponding to zero-sequence
current is called zero-sequence network. The sequence networks are interconnected in a
particular way to represent various unsymmetrical fault conditions. Therefore, to
calculate the effect of a fault by the method of symmetrical components, it is required to
determine the sequence networks.

3.7 SEQUENCE NETWORKS OF UNLOADED GENERATOR

Consider an unloaded gencrator which is grounded through a reactor as shown in Figure.
When a fault occurs, unbalanced currents depending on the type of fault will flow
through the lines. These currents can be resolved into their symmetrical components. To
draw the scquence networks of this generator. the component voltages/currents,
component impedances arc to be determined. The generated voltages are of positive-
sequence only as the gencrators are designed to supply balanced three-phase voltages.
Hence. positive-sequence network is composed of an emf in series with the positive-
sequence impedance. The generated emf in this network is the no-load terminal voltage to
neutral, which is also equal to the transient and subtransient voltages as the generator is
not loaded. The reactance in this network is the subtransient, transient, or synchronous
reactance, depending on the condition of study.
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Figure 3.6 Circuit of an unloaded generator grounded through reactance.



The negative- and zero-sequence networks are composed of only the respective sequence
impedances as there is no corresponding sequence emf. The reference bus for the
positive- and negative-sequence networks is the ncutral of the generator.

The current flowing in the impedance Zn between neutral and ground is 31y as shown in
Fig. 3.6. Thus the zero-sequence voltage drop from point a to the ground, is given by: (-
LZen — 31aZn), where Zg is the zero-sequence impedance of the gencrator. Thus the
zero-sequence network. which is single-phase equivalent circuit assumed to carry only
one phase. must have an zero-sequence impedance of Zo = (Zx +3Zn).

From the sequence networks, the voltage drops from point a to reference bus (or ground)
arc given by

Va = Ea - 1luZ,
Va= - 17
Vo= -1 Zp (3.15)
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Figure 3.7 Sequence current paths in a generator and
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Eq. 3.15 applicable to any unloaded generator are valid for loaded gencrator under steady
state conditions. These relations arc also applicable for transient or subtransient
conditions of a loaded generator if Eg” or Eg™ 1s substituted for Ea.

3.8 SEQUENCE IMPEDANCE OF CIRCUIT ELEMENTS

For obtaining the scquence networks, the component voltages/ currents and the
component impedances of all the elements of the network are to be determined. The usual
clements of a power system are: passive loads, rotating machines (generators/ motors),
transmission lines and transformers. The positive- and negative-sequence impedances of
lincar, symmetrical, static circuits are identical (because the impedance of such circuits is
independent of phase order provided the applied voltages are balanced).

The sequence impedances of rotating machines will generally differ from one another.
This is due to the different conditions that cxists when the sequence currents flows. The
flux due to negative-sequence currents rotates at double the speed of rotor while that the
positive-sequence currents is stationary with respect to the rotor. The resultant flux due to
zero-sequence currents is ideally zero as these flux components adds up to zero, and
hence the zero-sequence reactance is only due to the leakage flux. Thus, the zero-
sequence impedance of these machines is smaller than positive- and negative-scquence
impedances.

The positive- and negative-sequence impedances of a transmission line are identical,
while the zero-sequence impedance differs from these. The positive- and negative-
sequence impedances are identical as the transposed transmission lines are balanced
linear circuits. The zero-sequence impedance is higher due to magnetic ficld set up by the
zero-sequence currents is very different from that of the positive- or negative-sequence
currents ( because of no phase difference). The zero-sequence reactance is gencrally 2 to
3.5 times greater than the positive- sequence reactance. It is customary to take all the
sequence impedances of a transformer to be identical, although the zero-sequence
impedance slightly differs with respect to the other two.

3.9 SEQUENCE NETWORKS OF POWER SYSTEMS

In the method of symmetrical components. to calculate the cffect of a fault on a power
system, the sequence networks are developed corresponding to the fault condition. These
networks are then interconnected depending on the type of fault. The resulting network is
then analyzed to find the fault current and other parameters.

Positive- and Negative-Sequence Networks: The positive-sequence network is obtained
by determining all the positive-sequence voltages and positive-sequence impedances of
individual elements, and connecting them according to the SLD. All the gencrated emfs
arc positive-sequence voltages. Hence all the per unit reactance/impedance diagrams
obtained in the carlier chapters are positive-sequence networks. The negative-sequence
generated emfs are not present. Hence, the negative-sequence network for a power
system is obtained by omitting all the generated emfs (short circuiting emf sources) and



replacing all impedances by negative-sequence impedances from the positive-sequence
networks.

Since all the neutral points of a symmetrical three-phase system are at the same potential
when balanced currents are flowing, the ncutral of a symmetrical three-phase system is
the logical reference point. It is therefore taken as the reference bus for the positive- and
negative-sequence networks. Impedances connected between the neutral of the machine
and ground is not a part of cither the positive- or negative- sequence networks because
neither positive- nor negative-sequence currents can flow in such impedances.

Zero-Sequence Networks: The zero-sequence componcnts arc the same both in
magnitude and in phasc. Thus. it is cquivalent to a single-phase system and hence, zero-
sequence currents will flow only if a return path exists. The reference point for this
network is the ground (Since zero-sequence currents are flowing, the ground is not
necessarily at the same point at all points and the reference bus of zero-sequence network
docs not represent a ground of uniform potential. The return path is conductor of zero
impedance, which is the reference bus of the zero-sequence network. ).

If a circuit is Y-connected. with no connection from the neutral to ground or to another
ncutral point in the circuit, no zero-sequence currents can flow. and hence the impedance
10 zero-sequence current is infinite. This is represented by an open circuit between the
ncutral of the Y-connected circuit and the reference bus, as shown in Fig. 3.8a. If the
ncutral of the Y-connected circuit is grounded through zero impedance., a zero-impedance
path (short circuit) is connected between the ncutral point and the reference bus, as
shown in Fig. 3.8b. If an impedance Zn is connected between the ncutral and the ground
of a Y-connected circuit, an impedance of 3Zn must be connected between the neutral
and the reference bus (because. all the three zero-sequence currents (3140) flows through
this impedance to cause a voltage drop of 3140 Zp ). as shown in Fig. 3.8¢.

A A-connected circuit can provide no return path; its impedance to zero-sequence line
currents is therefore infinite. Thus, the zero-sequence network is open at the A-connected
circuit. as shown in Fig.3.9 However zero-sequence currents can circulate inside the A-
connected circuit.

The zero-sequence cquivalent circuits of threc-phase transformers deserve special
attention. The different possible combinations of the primary and the secondary windings
in Y and A alter the zcro-sequence network. The five possible connections of two-
winding transformers and their equivalent zero-sequence networks are shown in Fig.3.10.
The networks are drawn remembering that there will be no primary current when there is
no sccondary current, neglecting the no-load component. The arrows on the connection
diagram show the possible paths for the zero-sequence current. Absence of an arrow
indicates that the connection is such that zero-sequence currents cannot flow. The letters
P and Q identify the comresponding points on the connection diagram and equivalent
circuit:
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Case 1: Y-Y Bank with one neutral grounded:  If either one of the neutrals of a Y-Y
bank is ungrounded. zero-sequence current cannot flow in cither winding ( as the
absence of a path through onc winding prevents current in the other). An open circuit
exists for zero-sequence current between two parts of the system connected by the
transformer bank.

Case 2: Y-Y Bank with both neutral grounded: In this case. a path through
transformer exists for the zero-sequence current. Hence zero-sequence current can
flow in both sides of the transformer provided there is complete outside closed path
for it to flow. Hence the points on the two sides of the transformer are connected by
the zer0-sequence impedance of the transformer.
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Figure 3.10 Zero-sequence equivalent networks of three-phase
transformer banks for various combinations.

3. Case 3: Y- A Bank with grounded Y: In this case. there is path for zero-sequence
current to ground through the Y as the corresponding induced current can circulate in
the A. The equivalent circuit must provide for a path from lines on the Y side through
zero-sequence impedance of the transformer to the reference bus. However, an open
circuit must exist between line and the reference bus on the A side. If there is an
impedance Zn between neutral and ground, then the zero-sequence impedance must
include 3Zn along with zero-sequence impedance of the transformer.



Case 4: Y- A Bank with ungrounded Y: In this case, there is no path for zero-
sequence current. The zero-sequence impedance is infinite and is shown by an open
circuit.

Case 5: A-A Bank: In this case, there is no return path for zero-sequence current. The
zero-sequence current cannot flow in lines although it can circulate in the A windings.
The zero-sequence equivalent circuits determined for the individual parts separately
are connected according to the SLD to form the complete zero-sequence network.

Procedure to draw the sequence networks

The sequence networks are three separate networks which are the single-phase equivalent
of the corresponding symmetrical sequence systems. These networks can be drawn as
follows:

ta

For the given condition (stcady state. transicnt, or subtransicnt), draw the reactance
diagram (sclecting proper base values and converting all the per unit values to the
sclected base. if necessary). This will correspond to the positive-sequence network.

Determine the per unit negative-sequence impedances of all elements (if the values of
negative sequence is not given to any element, it can approximately be taken as equal
to the positive-sequence impedance). Draw the negative-sequence network by
replacing all emf sources by short circuit and all impedances by corresponding
negative-sequence impedances in the positive-sequence network.

. Determine the per unit zero-sequence impedances of all the elements and draw the

zero-sequence network comesponding to the grounding conditions of different
clements.

NUMERICAL EXAMPLES

Example 10: For the power system shown in the SLD, draw the sequence networks.
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EXERCISE PROBLEM: For the power system shown in the SLD. draw the sequence
networks.
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CHAPTER 4: UNSYMMETRICAL FAULTS

[CONTENTS: Preamble, L-G. L-L, L-L-G and 3-phase faults on an unloaded alternator without and with
fault impedance, faults on a power system withoat and with fault impedance, open
conductor faults in power systems. examples]

4.1 PREAMBLE

The unsymmetrical faults will have faulty parameters at random. They can be analyzed
by using the symmetrical componcnts. The standard types of unsymmetrical faults
considered for analysis include the following (in the order of their severity):

Line—to-Ground (L-G) Fault
Line—to-Line (L-L) Fault

Double Line-to-Ground (L-L-G)Fault and
Three-Phase—to-Ground (LLL-G) Fault.

VY VY

Further the neutrals of various equipment may be grounded or isolated, the faults can
occur at any gencral point F of the given system, the faults can be through a fault
impedance, cte. Of the various types of faults as above, the 3-¢ fault involving the ground
is the most severe one. Here the analysis is considered in two stages as under: (i) Fault at
the terminals of a Conventional (Unloaded) Generator and (ii) Faults at any point F, of a
given Electric Power System (EPS).

Consider now the symmetrical component relational equations derived from the three
sequence networks corresponding to a given unsymmetrical system as a function of
sequence impedances and the positive sequence voltage source in the form as under:

Vo= -lZ
Va= Ei-14Z
Va= -laZy “4.1)

These equations are refered as the sequence equations. In matrix Form the sequence
equations can be considered as:

Y 0 Zo 0 010
Va| =|E|- |0 Z 0 ]|y
v 0 0 0 7|l 4.2)

This equation is used along with the equations i.c., conditions under fault (c.u.f.), derived
to describe the fault under consideration. to determine the sequence current 1) and hence
the fault current I, in terms of E, and the sequence impedances, Z), Z; and Zg. Thus
during unsymmetrical fault analysis of any given type of fault, two sets of equations as
follows arc considered for solving them simultancously to get the required fault
parameters:

» Equations for the conditions under fault (c.u.f.)



# Equations for the sequence components (sequence cquations) as per (4.2) above.
4.2 SINGLE LINE TO GROUND FAULT ON A CONVENTIONAL (UNLOADED)
GENERATOR

Figure 4.1 LG Fault on a Conventional Generator

A conventional gencrator is one that produces only the balanced voltages. Let Ea, nd Ec
be the intemnally generated voltages and Zn be the neutral impedance. The fault is
assumed to be on the phase’a” as shown in figure 4.1, Consider now the conditions under
fault as under:

caf:
Ipy=0; I.=0: and V,=0. (4.3)
Now consider the symmetrical components of the current I, with I;=1.=0, given by:
10  CON R | I
Li | =(1/3)|1 a & 0
12 S o | 0 (44)
Solving (4.4) we get,
Li=lh=1g=(1/3) (4.5)

Further, using cquation (4.5) in (4.2). we get.

Vol |0] |20 0 0
Val=|E|- |0 z o

Ly
L




Va2 0 0 0 Z g (4.6)

Pre-multiplying equation (4.6) throughout by [1 1 1], we get.
Va+Va+Vao =- LnZo + E - nZ, - InZ2
iic. Va=E-Li(Zi+Z)+Z)) = zero,

Or in other words.
lat = [Eal(Zy + Z2 + Z0)] 4.7)

Va |t 7, | Vo 5

Tty Teely ol

Figure 4.2 Connection of sequence networks for LG Fault
on phase a of a Conventional Generator

The cquation (4.7) derived as above implies that the three sequence networks are
connected in scries to simulate a LG fault, as shown in figure 4.2. Further we have the
following relations satisfied under the fault conditions:

Li =l =1ao=(1/3) = [EAZ + Z2 + Zo))
Fault current Iy = Iy = 31a1 = [3ENZ) + Z2 + Zs)]
an Ea - laZy = Bl Zo+Zo N Zy+Z2470)
- EuZoNZy+ 72+ 70)
V.o = - EZoNZy+Z2+70)
Fault phase voltage V, =0,
Sound phase voltages Vp=a V,|+:|V,.:+V.u Ve= aV;.:u—a Va2+Vad
Fault phase power: V;l; = 0, Sound pahse powers: Vel = 0, and Vele =0,
1f Zy =0, then Zp = Zg.

- T e



10.If Zy = =, then Zo = =, i.c., the zero sequence network is open so that then.
I=L=0.

4.3 LINE TO LINE FAULT ON A CONVENTIONAL GENERATOR

—— a

T
(R‘\*) c

Figure 4.3 LL Fault on a Conventional Generator

Consider a linc to line fault between phase *b* and phase “¢’ as shown in figure 4.3, at the
terminals of a conventional generator, whose neutral is grounded through a reactance.
Consider now the conditions under fault as under:

[XTH &
L=0; Ih=-I; and Vb= V¢ (4.8)
Now consider the symmetrical components of the voltage V, with V=V, given by:
Vol | e RO | Va
Val| =(1/3)] 1 a a Vi
Va2 1 a° a Vb (4.9)
Solving (4.4) we get,
Va=Va (4.10)

Further, consider the symmetrical components of current I; with Ih=-1.. and L=0: given
by:

La 1 £ 1} |o
Iy | =(3)|1 a af Iy
Iz S oy | -Iy .11




Solving (4.11) we get,

Ip=0: and I =-1, (4.12)

Using equation (4.10) and (4.12) in (4.2), and since Vg = 0 ( Ly being 0), we get,

0 0 Zn 0 O 0
Va|= |Es|- |0 Z; O L
Vai 0 0 0 Z| |-la (4.13)
Pre-multiplying equation (4.13) throughout by [0 1 -1], we get,
Va-Va=E-14Z; - 1,Z; =0
Or in other words,
Ly =1ENZy + Z3)) (4.14)
bons
Zl Vaz

Taf—Tan | Jaa
e
@=0)

Figure 4.4 Connection of sequence networks for LL Fault
on phases b & ¢ of a Conventional Generator

The equation (4.14) derived as above implies that the three sequence networks are
connected such that the zero sequence network is absent and only the positive and
ncgative sequence networks are connected in series-opposition to simulate the LL fault.
as shown in figure 4.4. Further we have the following relations satisfied under the fault
conditions:

W

RNV

Li=-la=[E/NZ +7Z2)] and Ly =0, ;

Fault current Iy = Iy = - L = [V3EJ/(Z1 + Z2)] (since Iy = (a™-a)la = V31a)
Vat = Ea - lnZs = EZNZ\+Z2)

Var = Val = BaZoNZ\+22)

V=0, : 2

Fault phase voltages;Ve = Ve = aVa+a Va4V = (a+a")Var =- Vai

Sound phase voltage: Va = Vai+Va24+ Vi = 2Vai:

Fault phase powers are Vply and Vele .

Sound phase power: Vil; =0,



10. Since 1x0=0. the presence of absence of neutral impedance does not make any
difference in the analysis.

44 DOUBLE LINE TO GROUND FAULT ON A CONVENTIONAL
GENERATOR

~ — Zn

Figure 4.5 LLG Fault on a Conventional Generator

Consider a double-line to ground fault at the terminals of a conventional unloaded
generator, whose neutral is grounded through a reactance. between phase *b’ and phasc
‘c” as shown in figure 4.5, Consider now the conditions under fault as under:

caf.:
ILi=0 and Ve=V:=0 (4.15)

Now consider the symmetrical components of the voltage with Ve=V.=0, given by:

Vo 11 L V.

Val =(113)] 1 a a 0

Vo 1 a° a 0 (4.16)
Solving (4) we get,

Vat=Va2=Va=Vy/3 4.17)

Consider now the sequence equations (4.2) as under,

Vol |0 Z 0 0] |1g

Val=|E|-|0 z o |1

Va 0 0 0 Z| |Ia (4.18)

Pre-multiplying equation (4. 18) throughout by
| 1



0o 0 Uz (4.19)
We get,
Vi 0 Z 0 0] |1g
zZ'\val=Z'"|e|-Z"'10 2z o |1,
Va 0 0 0 7z |1 (4.20)

Using the identity: V= (E, - I,Z)) in cquation (4.19), pre-multiplying throughout by [1
1 1] and finally adding. we get,

E/Zy - L(Z1/Zg) + (EJZy)- Ly + EofZs - L(ZANZa) = (EJZy) — (bl 412)

=(EJZ1)-L, =(E/Z) (4.21)

Since 1, = 0. solving the equation (4.21), we get,
Li = EJ 17+ ZZe(Z2+70)] | (422)
Ret.BUs

Figure4.6 Connection of sequence networks for LLG Fault on
phases b and ¢ of a Conventional Generator

The cquation (4.22) derived as above implics that. to simulate the LLG fault, the three
sequence networks are connected such that the positive network is connected in series
with the parallel combination of the negative and zero sequence networks. as shown in
figure 4.6. Further we have the following relations satisfied under the fault conditions:

L = (Ey/ [Z1+Z2ZoNZ2+Z0)) ): L= -LaZoNZ2 + Zo) and b = -LZ2/(Z2 + Zo).
Fault current Iz Lo=( 1730 1:+Ip+kc) = (1/3)(Ie+1c) = 1¢#3. Hence Ir= 31w

.= 0, Ve=V=0 and hence Vi=Vao=Va=V./3

Fault phase voltages;:Ve =V =0

Sound phase voltage: Va= Va+Va2+V =3Va:

Fault phase powers arc Vils =0, and Vel =0, since Vy=V=0

AN PE BN



7. Healthy phase power: V.‘I.,. =0, since L=0
8. If Zo=m, (i.c., the ground is isolated), then Io=0. and hence the result is the same
as that of the LL fault [with Zy==, equation (4.22) yiclds equation (4.14)].

45 THREE PHASE TO GROUND FAULT ON A CONVENTIONAL
GENERATOR

&
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Figure 4.7 Three phase ground Fault on a Conventional Generator

Consider a three phase to ground (LLLG) fault at the terminals of a conventional
unloaded generator, whose neutral is grounded through a reactance, between all its three
phases a, b and ¢, as shown in figure 4.7, Consider now the conditions under fault as
under:

caf.:
Vo=Vp=V.=0, L+LL+1L.=0 (4.23)
Now consider the symmetrical components of the voltage with V,=Vie=V.= 0, given by:
Vi ) S & 0
Va| =(I3)| 1 a a 0
Va2 1 a a 0 (4.24)




Solving (4.24) we get.

Vai=Va=Va=0 (4.25)
Thus we have

Vi =EBy—=LiZ (4.26)
So that after solving for 15 we, get,

la=[E/Z1] (4.27)

Figure 4.8 Connection of sequence networks for 3-phase ground
Fault on phases b and ¢ of a Conventional Generator

The equation (4.26) derived as above implics that, to simulate the 3-phase ground fault,
the three scquence networks are connected such that the negative and zero sequence
networks are absent and only the positive sequence network is present, as shown in figure
4.8. Further the fault current. Iy in case of a 3-phase ground fault is given by

It = L= la = (EJ/Z)) (4.28)

It is to be noted that the presence of a neutral connection without or with a neutral
impedance, Z, will not alter the simulated conditions in case of a three phase to ground
fault.

4.6 UNSYMMETRICAL FAULTS ON POWER SYSTEMS

In all the analysis so far, only the fault at the terminals of an unloaded generator have
been considered. However, faults can also occur at any part of the system and hence the
power system fault at any gencral point is also quite important. The analysis of
unsymmetrical fault on power systems is done in a similar way as that followed thus far
for the case of a fault at the terminals of a generator. Here, instead of the sequence
impedances of the gencrator, cach and every clement is to be replaced by their
corresponding sequence impedances and the fault is analyzed by suitably conneccting
them together to arrive at the Thevenin equivalent impedance if that given sequence.
Also, the internal voltage of the gencrators of the equivalent circuit for the positive



sequence network is now Vi (and not Ey), the pre-fault voltage to ncutral at the point of
fault (PoF) (ref. Figure 4.9).

F LW Ls) @BLr6)

B N
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Figure 4.9 Unsymmetrical faults in Power Systems

Thus, for all the cases of unsymmetrical fault analysis considered above. the sequence
equations are to be changed as under so as to account for these changes:

v 0
Val = V-
¥ 0

(i) LG Fault at any point F of a given Power system
Let phase “a’ be on fault at F so that then. the c.u.f. would be:
h=0; I.=0; and Va=0.
Hence the derived conditions under fault would be:
Li=la=1g=(1/3)
Ly =[IVilZ) + 27 + Zy)] and
Iy=31, (4.30)

Zo 0 0
0 7 0
o 0 zZ

Lo
lal
Lo

(4.29)

(ii) LL Fault at any point F of a given Power system
Let phases *b” and “¢” be on fault at F so that then, the c.u.f. would be:
L,=0; I=-1: and Vp=V,
Hence the derived conditions under fault would be:
Var=Va: Lp=0;1p=-I
Ly =[Vi/(Z; +Z;)] and
I=ly=-1 =[N3 Vi/(Z + Z3)] (4.31)

(ii) LLG Fault at any point F of a given Power system
Let phases *b” and “¢” be on fault at F so that then, the c.u.f. would be:
I,=0 and Vy=V.=0
Hence the derived conditions under fault would be:
Vaii=Va=Vg=(V,/3)



L = Vil |Z\+Z2 20 Z2+70)] )

1= -13ZpNZs + Z3): 1y = -1, ZoNZ; + Z;3) and
Ir=31, (4.32)

(ii) Three Phase Fault at any point F of a given Power system
Let all the 3 phases a. b and ¢ be on fault at F so that then, the c.u.f. would be:
Vo=Vp=V.=0, L+L+1.=0
Hence the derived conditions under fault would be:
Vii=Va=Vgy=VJ/3

Vo=Va=Va=0lp=12=0,
L = [Vi/Z|] and Is= Ly=1: (4.33)

4.7 OPEN CONDUCTOR FAULTS

Various types of power system faults occur in power systems such as the shunt type faults
(LG. LL, LLG, LLLG faults) and series type faults (open conductor and cross country
faults). While the symmetrical fault analysis is uscful in determination of the rupturing
capacity of a given protective circuit breaker, the unsymmetrical fault analysis is useful in
the determination of relay setting. single phase switching and system stability studies.

When one or two of a three-phase circuit is open due to accidents, storms. etc.. then
unbalance is created and the asymmetrical currents flow. Such types of faults that come
in series with the lines are refered as the apen conductor faults. The open conductor faults
can be analyzed by using the sequence networks drawn for the system under
consideration as scen from the point of fault, F. These nctworks are then suitably
connected to simulate the given type of fault. The following are the cases required to be
analyzed (ref. fig.4.10).

!
t el
: le? | v 'F' io
L Ib - b b—*- l’—b‘ oy .
: '\q,b'f rb { 5 b

Figure 4.10 Open conductor faults.

(i) Single Conductor Open Fault: consider the phase ‘a’ conductor open so that then the
conditions under fault arc:

L=0; Vr=Vg=0
The derived conditions are:



Li+1la+10=0 and

Val' = Va2’ = Var = (Va/3) (4.349)
These relations suggest a parallel combination of the three sequence networks as shown
infig. 4.11.

Figure 4.11 Sequence network connection for 1-conductor open fault

It is observed that a single conductor fault is similar to a LLG fault at the fault point F of
the system considered.

(ii) Two Conductor Open Faull: consider the phases *b’ and *¢” under open condition so
that then the conditions under fault are:
Iy=Lk=0; Vgugr=0

The derived conditions are:
Li=lg=1g=1/3and
Valr=Va =Vay =0 (4.35)

These relations suggest a serics combination of the three sequence networks as shown in
fig. 4.12. It is observed that a double conductor fault is similar to a LG fault at the fault
point F of the system considered.

£ T ¢\ Taa £ Tao

Figure 4.12 Sequence network connection for 2-conductor open fault.



(iii) Three Conductor Open Fault: consider all the three phases a, b and ¢, of a 3-phasc
system conductors be open. The conditions under fault are:

L+h+L=0
The derived conditions are:

Li=lg=1pu=0 and

Vo=V =0and Va1 = V¢ (4.36)
These relations imply that the sequence networks are all open circuited. Hence, in a strict
analystical sense. this is not a fault at all!

48 FAULTS THROUGH IMPEDANCE

All the faults considered so far have comprised of a direct short circuit from one or two
lines to ground. The effect of impedance in the fault is found out by deriving equations
similar to those for faults through zero valued neutral impedance. The connections of the
hypothetical stubs for consideration of faults through fault impedance Zs are as shown in
figure 4.13.

: R
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e

! s Lm\_((am>

Fig
ure 4.13  Stubs Connections for faults through fault impedance Zg.

(i) LG Fault at any point F of a given Power system through Z;
Let phasc *a’ be on fault at F through Z;;, so that then. the c.u.f. would be:
Ib=0; It=0: and V.=0.
Hence the derived conditions under fault would be:
Li =l =1la=(I/3)
L = [Vi/ (Zy + Z2 + Zo+3Zp)] and
If= 31 (4.37)

(i) LL Fault at any point F of a given Power system through Zy
Let phases *b” and “c” be on fault at F through Zg so that then, the c.u.f. would be:
L=0: Ih=-1I: and Ve=V;
Hence the derived conditions under fault would be:
Var=Va: k=01 =-I
1 = [Vi/ (Zy + Za+Zy)] and
Ir=ly=- L =[N3 Vi/(Z) + Za+Z9)] (4.38)

(iii) LLG Fault at any point F of a given Power system through Z;



Let phases *b” and “¢” be on fault at F through Zg, so that then, the c.u.f. would be:
L=0 and Ve=Vc=0
Hence the derived conditions under fault would be:
Vai = Va2 =Va = (Va/3)

Iy = Vil [Z4+Zo(Zo 3ZIN 24 Zr+ 3Z1)] )

= -Lal( Zo-3ZON(Z2+ Zark 37); Vo) = -l ZoNZ2+(Zi+3Zs) and
Ir=3Ia0 (4.39)

(iv) Three Phase Fault at any point F of a given Power system through Zy

Let all the 3 phases a. b and ¢ be on fault at F, through Zs so that the c.u.f. would be: V, =
I.Zf : Hence the derived conditions under fault would be: Iy = [Vi AZ1+Z); The
connections of the sequence networks for all the above types of faults through Zs arc as
shown in figure 4.14.

LG Fault LL Fault

Nt F 2 N nt
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| = ¥

3 2 § E: B
Ly 32_5_

Icuqf

LLG Fault 3-Ph. Fault



Figure 4.15  Sequence network connections for faults through impedance

49 EXAMPLES

Example-1: A three phase generator with constant terminal voltages gives the following
currents when under fault: 1400 A for a linc-to-line fault and 2200 A for a line-to-ground
fault. If the positive sequence generated voltage to neutral is 2 ohms, find the reactances
of the negative and zero sequence currents.

Solution: Case a) Consider the conditions w.r.t. the LL fault:
L = [Eal(Z) + Z2))
=l =-L=V31,
=N3IEa/(Z1+Z2) or
(Zy+Z2) =V3Ey /I
i.e.. 2+ Z2 = V3 [2000/1400]
Solving, we get,  Z; = 0.474 ohms.
Case b) Consider the conditions w.r.t. a LG fault:
Lt = [Eal/(Z) + Z24+Z0))
Ir=31,
3E0N/(Zy + Z2+470) or
(Zy + Z+7p) =3 Ey ) Ig
ic. 240474 + 7= 3 [2000/2200]
Solving, we get,  Zn = 0.253 ohms.

Example-2: A dead fault occurs on one conductor of a 3-conductor cable supplied y a 10
MVA alternator with carhed ncutral. The alternator has +ve, -ve and 0O-sequence
components of impedances per phase respectively as: (0.54j4.7), (0.24j0.6) and (j0.43)
ohms. The corresponding LN values for the cable up to the point of fault arc:
(0.36+j0.25), (0.36+j0.25) and (2.9+j0.95) ohms respectively. If the generator voltage at
no load (Ea1) is 6600 volts between the lines, determine the (i)Fault current. (ii)Sequence
components of currents in lines and (iii)Voltages of healthy phases.

Solution: There is LG fault on any one of the conductors. Consider the LG fault to be on
conductor in phase a. Thus the fault current is given by:

(i) Fault current: I;=31,=[3EAZ| +7Z; + Zy)]
= 3(6600/Y3)/ (4.324j7.18)
=1364.24 £58.97".



(ii) Sequence components of line currents:
Li=lp=ly=1/3=1y3 = 45475 258.97".
(iii) Sound phase voltages:
Vai = Es - 1niZ) = Ea(Z24Z0W(Z14Z2470) = 1871.83 £-26.17",
Va = - EZNZ1+Z2+70) = 462.91 Z177.6".
Vo = - EZgN(Z+ Z2+70) = 1460.54 £146.5°,
Thus, ’
Sound phase voltages Vi = a"V,+aV 2+ Vy = 2638.73 2-165.8" Volts,
And V, = aV,+a’V 2+ Vy = 323635 £110.8" Volts.

Example-3: A generator rated 11 kV, 20 MVA has reactances of X=15%, X;=10% and
Xp=20%. Find the reactances in ohms that arc required to limit the fault current to 2 p.u.
when a a line to ground fault occurs. Repeat the analysis for a LLG fault also for a fault
current of 2 pu.

Solution: Case a: Consider the fault current expression for LG fault given by:
Ifr=31x
i.c., 2.0 = 3Ea / j{X +X2+Xo]
= 3(1.020% / j[0.1540.14+0.243Xa]
Solving we get
3Xn=2.1pu
=2.1(Zs) ohms = 2.1 (11°720) =2.1(6.05)
=12.715 ohms.
Thus Xy =4.235 ohms.

Case b: Consider the fault current expression for LLG fault given by:
Ip=310=3{ -1;; X X; + Xg+3X;) }= 2.0,
where, 1 = [EJ [ X+ X2(X0+3X, V(X +X+3X)])
Substituting and solving for X, we get,
Xn = 0.078 pu
= 0.47 ohms.

Example-4: A three phase 50 MVA. 11 kV gencrator is subjected to the various faults
and the surrents so obtained in cach fault are: 2000 A for a three phase fault; 1800 A for a
line-to-line fault and 2200 A for a line-to-ground fault. Find the sequence impedances of
the gencrator.

Solution: Case a) Consider the conditions w.r.t. the three phase fault:
If =L=1=EyZ
i.c.. 2000 = 11000/ (V3Z;)
Solving, we get.  Zy = 3.18 ohms (1.3 pu. with Zy = (11%/50) = 2.42 ohms).



Case b) Consider the conditions w.r.t the LL fault
Ly = [Eqf(Z) + Z2)]
Ir=Ih =-L=431u
NI Ey S (Z +Z2) or
(Z) + Z2) =3 EalIf
ie. 308+ Zz = %3 (110000431 1500
Solving, we get, Z1=2.936 ochms = 1.213 pu.
Case ¢} Consider the conditions w.r.t. a LG fault

Ly = [Egf(Z) + Zx+Zg)]

Ifr = 31u
3 By /() + Zo+Zg) o

(T + T+ =3E,/ I
i.c.. 318+ 2.936 + Zo = 3 (1 1000/43) 2200

Solving, we get, Zp=2.55 chms = 1.054 pu.



CHAPTER 5: POWER SYSTEM STABILITY

51 INTRODUCTION

Power system stability of modem large inter-connected systems is a major problem for
secure operation of the syvstem. Recent major black-outs across the globe caused by
system instability, even in very sophisticated and secure systems. illustrate the problems
facing secure operation of power systems. Earlier, stabilitv was defined as the ability of a
system 1o return o normal or stable operation after having been subjected 1© some form
of disturbance. This fundamentally refers to the ability of the system to remain in
synchronism. However, modern power systems operate under complex interconnections,
controls and extremely stressed conditions. Further, with increased automation and use of
electronic equipment. the quality of power has gained utmost importance, shifting focus

on o concepts of voltage stability, frequency stability,  inter-area oscillations etc.

The IEEE/CIGRE Joint Task Force on stability terms and conditions have proposed the
following defimtion i 2004: “Power System stability is the ability of an electric power
system, for a given initial eperating condition, to regain a slate of operating equilibrinm
after being subjected to a physical disturbance, with most system variables bounded, so

that practically the entire system remains intact ™.

The Power System is an extremely non-linear and dynamic swstem, with operating
parameters continuously varving. Stability is hence, a function of the initial operating
condition and the nature of the disturbance. Power systems are continually subjected to
small disturbances in the form of load changes. The sysiem must be in a position w be
able 1o adjust 1o the changing conditions and operate satisfactorily. The system must also
withstand large disturbances, which may even cause siructural changes due to isolation of

somic faulted clements.

A power system may be stable for a particular (large) disturbance and unstable for
ancther disturbance. It is impossible to design a system which is stable under all



disturbances. The power system is generally designed to be stable under those
disturbances which have a high degree of occurrence. The response to a disturbance is
extremely complex and involves practically all the equipment of the power system. For
example, a short circuit leading to a line isolation by circuit breakers will cause variations
in the power flows, network bus voltages and generators rotor speeds. The voltage
variations will actuate the voltage regulators in the system and gencerator speed variations
will actuate the prime mover governors: voltage and frequency variations will affect the
system loads. In stable systems. practically all generators and loads remain connected,
even though parts of the system may be isolated to preserve bulk operations. On the other
hand, an unstable system condition could lead to cascading outages and a shutdown of a
major portion of the power system.

5.2 CLASSIFICATION OF POWER SYSTEM STABILITY

The high complexity of stability problems has led to a meaningful classification of the
power system stability into various categories. The classification takes into account the
main system variable in which instability can be observed. the size of the disturbance and
the time span to be considered for assessing stability.

5.2.1 ROTOR ANGLE STABILITY

Rotor angle stability refers to the ability of the synchronous machines of an
interconnected power system to remain in synchronism after being subjected to a
disturbance. Instability results in some generators accelerating (decelerating) and losing
synchronism with other generators. Rotor angle stability depends on the ability of cach
synchronous machine to maintain equilibrium between clectromagnetic torque and
mechanical torque. Under steady state. there is equilibrium between the input mechanical
torque and output clectromagnetic torque of cach gencrator, and its speed remains a
constant. Under a disturbance. this cquilibrium is upset and the gencrators
accelerate/decelerate according to the mechanics of a rotating body. Rotor angle stability

is further categorized as follows:



Small single (or small disturbance) rotor angle stability: It is the ability of the power
system to maintain synchronism under small disturbances. In this case. the system
equation can be lincarized around the initial operating point and the stability depends
only on the operating point and not on the disturbance. Instability may result in

(i) A non oscillatory or a periodic increase of rotor angle

(ii) Increasing amplitude of rotor oscillations due to insufficient damping.

The first form of instability is largely eliminated by modem fast acting voltage regulators
and the second form of instability is more common. The time frame of small signal
stability is of the order of 10-20 scconds after a disturbance.

Large-signal rotor angle stability or transient stability: This refers to the ability of
the power system to maintain synchronism under large disturbances. such as short circuit,
line outages etc. The system response involves large excursions of the gencrator rotor
angles. Transient stability depends on both the initial operating point and the disturbance
parameters like location, type, magnitude etc. Instability is normally in the form of a
periodic angular separation. The time frame of interest is 3-5 seconds after disturbance.

The term dynamic stability was carlier used to denote the steady-state stability in the
presence of automatic controls (especially excitation controls) as opposed to manual
controls. Since all generators arc equipped with automatic controllers today. dynamic

stability has lost relevance and the Task Force has recommended against its usage.

5.2.2 VOLTAGE STABILITY

Voltage stability refers to the ability of a power system to maintain steady voltages at all
buscs in the system after being subjected to a disturbance. It depends on the ability of the
system to maintain equilibrium between load demand and load supply. Instability results
in a progressive fall or rise of voltages of some buses, which could lead to loss of load in
an arca or tripping of transmission lines, leading to cascading outages. This may

eventually lead to loss of synchronism of some  generators.

The cause of voltage instability is usually the loads. A run-down situation causing voltage

instability occurs when load dynamics attempt to restore power consumption beyond the



capability of the transmission network. Voltage stability is also threatened when a
disturbance increases the reactive power demand beyond the sustainable capacity of the
available reactive power resources. Voltage stability is categorized imto the following

sub-categories:

Small — disturbance voltage stability: [t refers to the system’s ability to mamntain
steady voltages when subjected to small perturbations such as incremental changes in
load. This is primarily influenced by the load characteristics and the controls at a given

point of time.

Large disturbance voliage stability: It refers to the systems ability to maintain steady
voltages following large disturbances; It reguires computation of the non-lincar response
of the power system to include interaction between various devices like motors,
transformer tap changers and field current limiters. Short term voltage stability involves
dynamics of fast acting load components and period of interest is in the order of several
seconds. Long term voltage stability involves slower acting equipment like tap-changing
transformers and penerator current limiters. Instability is due to loss of long-term

equilibrium.

523 FREQUENCY STABILITY

Freguency stability refers to the ability of & power system to maintain steady frequency
following a severe disturbance, causing considerable imbalance between generation and
load. Instability occurs in the form of sustained frequency swings leading to tripping of
generating units or loads. During frequency swings. devices such as under frequency load
shedding. generator controls and protection equipment get activated in a few seconds.
However, devices such as prime mover energy supply systems and load wvoltage
regulators respond after a few minutes. Hence, frequency stability could be a short-term

or a long-term phenomenon.

53 MECHANICS OF ROTATORY MOTION



Since a synchronous machine is a rotating body. the laws of mechanics of rotating bodies
arc applicable to it. In rotation we first define the fundamental quantitics. The angle 05 is
defined, with respect to a circular arc with its center at the vertex of the angle. as the ratio

of the arc length s to radius r.
= (5.1)

The unit 1s radian. Angular velocity @y is defined as

W= -:i;.- (5.2)
and angular acceleration as

a =d:;'—" = d‘;r—g.' (5.3)
The torque on a body due to a tangential force F at a distance r from axis of rotation is
given by T=rF (5.4)

The total torque is the summation of infinitesimal forces, given by

T=irdF (5.5)
The unit of torque is N-m. When torque is applied to a body, the body experiences
angular acceleration. Each particle experiences a tangential accelerationa = ra , where r
is the distance of the particle from axis of rotation. The tangential force required to
accelerate a particle of mass dm is

dF~adm=radm (5.6)

The torque required for the particle is

dT=rdF = adm (5.7)
and that required for the whole body is given by

T-ufrzdm ~la (5.8)
Here, 1= [rdm (5.9)

It is called the moment of inertia of the body. The unit is Kg — m’. If the torque is
assumed to be the result of a number of tangential forces F, which act at different points
of the body

T=YrF
Now cach force acts through a distance, ds =rdfy and the work done is Y F.ds ic.,



dw=ZFr‘pm-(”mT

W= ]Tdl, (5.10)
and y ek (5.11)
do_

Thus the unit of torque may also be Joule per radian. The power is defined as rate of
doing work. Using (5.11)

Tdb
=ﬂ=——=r..'_ (5.12)
dt dt

The angular momentum M is defined as
M=1wo, (5.13)
And the kinetic energy is given by

A .
llu.'_' =—M o (5.14)
2 2
From (5.14) we can sce that the unit of M has to be J-sec/rad.

KE =

54 SWING EQUATION:

The laws of rotation developed in section.3 are applicable to the synchronous machine.
From(.5.8)

Ia =T
% =T (5.15)
Here T is the net torque of all torques acting on the machine, which includes the shaft
torque (due to prime mover of a generator or load on a motor), torque due to rotational

losses (friction, windage and core loss) and electromagnetic torque.

Let T, = shaft torque or mechanical torque corrected for rotational losses
T, = Electromagnetic or clectrical torque

For a generator T, tends to accelerate the rotor in positive direction of rotation as shown
in Fig 5.1. It also shows the corresponding torque for a motor with respect to the
direction of rotation.
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Fig. 5.1 Torque acting on a synchronous machine

The accelerating torgue for a generator is given by:
Th=TaldT§ (5.16)

Under steady-state operation of the gencrator, Ty is equal to Te and the accelerating
torque is zero. There is no acceleration or deccleration of the rotor masses and the
machines run at a constant synchronous speed. In the stability analysis in the following
sections, Ty, is assumed to be a constant since the prime movers (steam turbines or hydro
turbines) do no act during the short time period in which rotor dynamics are of interest in
the stability studics.

Now (5.15) has to be solved to determine #_ as a function of time. Since f_ is measured
with respect to a stationary reference axis on the stator, it is the measure of the absolute
rotor angle and increases continuously with time cven at constant synchronous speed.
Since machine acceleration /deccleration is always measured relative to synchronous
speed. the rotor angle is measured with respect to a synchronously rotating reference axis.
Let

o, =0 w ! (5.17)



where w is the synchronous speed in mechanical rad/s and & is the angular

displacement in mechanical mdians. Taking the derivative of (5.17) we get

dé_ db
—ffl = el w

dt dt "
d=d d¥
S R (5.18)
dr dr’
Substituting (5.18) in (5.15) we get
d’s
I—==Ty=Ta & N-m (5.19)
dr’
Multiplying by w_ on both sides we get

w I—==w (Ty T) N-m (5.20)
dr’

From (5.12) and (5.13). we can write
MZ—=-p_-P W (5.21)

where M is the angular momentum, also called inertia constant, Py, is shaft power input
less rotational losses, Pe is clectrical power output corrected for losses and P; is the
acceleration power. M depends on the angular velocity w . and hence is strictly not a
constant, because W deviates from the synchronous speed during and after a
disturbance. However, under stable conditions w_ does not vary considerably and M can
be treated as a constant. (21) is called the “Swing equation”. The constant M depends on
the rating of the machine and varics widely with the size and type of the machine.
Another constant called H constant (also referred to as inertia constant) is defined as

stored kinetic energy in mega joules
at sychronous speed

Machine rating in MVA

H=

MJTMVA (5.22)

H falls within a narrow range and typical values are given in Table 5.1. If the rating of the
machine is G MVA, from (5.22) the stored kinctic energy is GH Mcga Joules. From
(5.19)



Mo, M) (5.23)

or

MJ-s/mech rad (5.24)

The swing equation (5.21) is written as
2H d’§, P _FR._F

R L Sl (5.25)
w, dt G G

In (5.25) &, is expressed in mechanical radians and w,__ in mechanical radians per
second (the subscript m indicates mechanical units). If 4 and w have consistent units
(both are mechanical or electrical units) (5.25) can be written as

) 2
i “’T‘: =P =P-P pu (5.26)

Here w, is the synchronous speed in electrical rad/s (w, ={%]d,_) and P is

-

acceleration power in per unit on same base as H. For a system with an clectrical

frequency f Hz, (5.26) becomes

s

H d°%
LS PP (527)
T f dr’ - ™
when & is in electrical radians and
-H—Q=P =P -P pu (5.28)

when & is in electrical degrees. Equations (5.27) and (5.28) also represent the swing
equation. It can be scen that the swing equation is a second order differential equation

which can be written as two first order differential equations:

il PP P (5.29)
w, dt
:'—A =W, (5.30)

In which w.w, and & arc in electrical units. In deriving the swing equation, damping
has been neglected.



Tahle 5.1 H constants of synchronous machines

Type of machine H (MIMVYA)

Turbine generator condensing 1800 pm | 9 -6

3600 rpm

Non condensing 3600 pm | 4-3

Water wheel generator

Slow speed < 200 pm | 2-3

High speed > 200 pm | 2 -4

Synchronous condenser Large | 125
Smatt | ?

Synchronous motor with load varyving

from 1.0 to 5.0 20

}25‘1 less for hydrogen cooled

In defining the inertia constant H, the MV A base used is the rating of the machine. In a

multi machine system, swing equation has to be solved for each machine, in which case,

acommon MYA base for the system has to chosen. The constant H of each machine must

be consistent with the system base.

Let Gmack = Machine MV A rating ( base)
Giygsiem = System MV A base

In {5.25), H is computed on the machine rating G=G__

L
Multiplying (5.25) by E’“‘"‘— on both sides we get

avuke

Gos |2H d%, P-P|G._,
G w_ & G_, |G

rriem ratem

2H, o d7E
— ——==F_— P puion system basc)
u, dr”
where H gppem = H mach
o

rraiem



In the stability analysis of a multi machine system, computation is considerably reduced
if the number of swing equations to be solved is reduced. Machines within a plant
normally swing together after a disturbance. Such machines are called coherent machines
and can be replaced by a single equivalent machine., whose dynamics reflects the
dynamics of the plant. The concept is best understood by considering a two machine

system.

54.1 SWING EQUATION OF TWO COHERENT MACHINES

The swing equations for two machines on a common system base are:

2 8
WL
W, 3
2H, d*5,

—=Fs;—-F:pu (5.34)
w, dr

Now &, =&, =4 (since they swing together). Adding (5.33) and (5.34) we get

2H,_ d°
~ %:p, -P pu (5.35)

Where H_ =H, +H,

P-=P-|+P.!
F =F,+F,

The relation (5.35) represents the dynamics of the single equivalent machine.

54.2 SWING EQUATION OF TWO NON - COHERENT MACHINES

For any two non — coherent machines also (5.33) and (5.34) are valid. Subtracting (5.34)
from (33) we get

6, 2 d%, F.-F 2=
d {l o= d :. ta ) 8- Pn. PI! (5.36)
dr w,  dt H, H.

H H.
Multiplying both sides by ———— we get
H +H,



2 ”l": dl(ﬁl—h:) Pnl”:-Pn:HI Pn”:’pr:”l
H,+H. df  H,+H, H, +H.

o,

i = 2% P, (5.37)
iLc ——in e =ik — el »
Wi g ; t
where &,. =&, -4, the relative angle of the two machines
H H,
"-H,+H:

P H.-p., H
Py =
H +H,

P py H: —p.. H
BT e
H +H,

From (5.37) it is obvious that the swing of a machine is associated with dynamics of
other machines in the system. To be stable, the angular differences between all the
machines must decrease after the disturbance. In many cases, when the system loses
stability, the machines split into two coherent groups, swinging against cach other. Each
coherent group of machines can be replaced by a single equivalent machine and the
relative swing of the two equivalent machines solved using an equation similar to (5.37),

from which stability can be assessed.

The acceleration power is given by P, = Py, — P,. Henee, under the condition that P is a
constant, an accelerating machine should have a power characteristic, which would

increase P, as & increascs.

This would reduce P, and hence the acceleration and help in maintaining stability. If on
the other hand. Pe decrcases when 8 increases. Py would further increasc which is

detrimental to stability. Therefore, ‘;—P must be positive for a stable system. Thus the

power-angle relationship plays a crucial role in stability.



5.5 POWER-ANGLE EQUATION:

In solving the swing equation, certain assumptions are normally made
(i) Mechanical power input Py, is a constant during the period of interest.
immediately after the disturbance
(ii)  Rotor speed changes are insignificant.
(iii)  Effect of voltage regulating loop during the transient is neglected i the
excitation is assumed to be a constant.
As discussed in section 4. the power-angle relationship plays a vital role in the solution

of the swing equation.

55.1 POWER-ANGLE EQUATION FOR A NON-SALIENT POLE MACHINE:
The simplest model for the synchronous generator is that of a constant voltage behind an
impedance. This model is called the classical model and can be used for cylindrical rotor
(non-salient pole) machines. Practically all high-speed turbo alternators are of
cylindrical rotor construction, where the physical air gap around the periphery of the rotor
is uniform. This type of gencrator has approximately equal magnetic reluctance.
regardless of the angular position of the rotor. with respect to the armature mmf. The
phasor diagram of the voltages and currents at constant speed and excitation is shown in
Fig. 5.2.
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Fig 5.2 Phasor diagram of a non-salient pole synchronous generator
E; = Generator internal emf.

Vi = Terminal voltage
8 = Power factor angle



la = Armature current
R, = Armature resistance
xg = Direct axis reactance

The power output of the generator is given by the real part of Eg L.

E 2§ —-v Z0°
L=t

A (5.38)
R, + fx;
E,£6 -V, 20¢
Neglecting R, [ =
JxX,
A E, 20008 v zo0Y
P=R {[E, 25)
'y Iﬂ'
E cos90°  E,V, cos(90°+4)
- Xy - Xa
E,V, sind
_ (5.39)
XAy

{MNote- R stands for real part of).  The graphical representation of (9.39) is called the
power angle curve and it is as shown in Fig 5.3.
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Fig 5.3 Power angle curve of a non — salient pole machine

The maximum power that can be transferred for a particular excitation is given by ——
Xy

at & = 90°,



552 POWER ANGLE EQUATION FOR A SALIENT POLE MACHINE:

Here because of the salient poles. the reluctance of the magnetic circuit in which flows
the flux produced by an armature mmf in line with the quadrature axis is higher than that
of the magnetic circuit in which flows the flux produced by the armature mmf in line with
the direct axis. These two components of armature mmf are proportional to the
corresponding components of armature current. The component of armature current
producing an mmf acting in line with direct axis is called the direct component, 14. The
component of armature current producing an mmf acting in linc with the quadrature axis
is called the quadrature axis component, Iy. The phasor diagram is shown in Fig 5. with
same terminology as Fig 5.4 and R, neglected.

diveck aly =2,

-'-'L«.«.}wh-" —3
OJ-I.S .

Fig 5.4 Phasor diagram of a salient pole machine

Power output P =V, cost
=E,I, +E], (5.40)
From Fig 5.4, E,=Vsiné ; E_ =V, cosd

E,-E
I, =—"—= =1 sin(6 +0)
d

1 =5=1,cos(a +) (5.41)
X

v
NE. |

Substituting (5.41) in (5.40), we obtain
E,V,sind  V(x, - x_)sin2s
= +

=
x; 2x,x,

P (5.42)




the relation (5.42) gives the steady state power angle relationship for a salient pole
machine. The second term does not depend on the excitation and is called the reluctance
power component. This component makes the maximum power greater than in the

classical model. However, the angle at which the maximum power occurs is less than 90°.

5.6 POWER ANGLE RELATIONSHIP IN A SMIB SYSTEM:

Without loss of generality. many important conclusions on stability can be arrived at by
considering the simple case of a Single Machine Infinite Bus (SMIB). where a generator
supplics power to an infinite bus. The concept of an infinite bus arises from the fact that
if we connect a generator to a much larger power system, it is reasonable to assume that
the voltage and frequency of the larger system will not be affected by control of the
generator parameters. Hence, the external system can be approximated by an infinite bus,

BHE-p—
E,;L{ VL_L@ = EBLD.O
=P

Fig. 5.5 SMIB System

In Fig. 5.5, the infinite bus voltage is taken as reference and 6 is the angle between E; and
Ep. The generator is assumed to be connected to the infinite bus through a lossless line of
reactance xe. The power transferred (using classical model) is given by

E E,
P= siné (543)
Xy +X,
and using salient pole model,
po EE B, %)

sind + sin2) (544)
X, +x, 2x, +x, )i.r. +x)



An important measure of performance is the steady state stability limit, which is defined
as the maximmm power that can be transmilted in steady stale without loss of

synchromizm, to the receiving end. If ransient analysis is required, respective transient

quantities namely £, v, and x, are used in (5.43) and (5.44) to calculate the power

output.
57 TRANSIENT STABILITY

Transient stability is the ability of the system o remain stable under large disturbances
like short circuits, line outages, generation or load loss etc. The evaluation of the transient
stability is required offline for planning. design etc. and online for load management,
emergency control and security assessment. Transient stability analvsis deals with actual
solution of the nonlinear differential equations describing the dynamics of the machines
and their controls and interfacing it with the algebraic equations describing the

interconnections through the transmission network.

Since the disturbance is large, linearized analvsis of the swing equation {which describes
the rotor dynamics) is not possible. Further, the fault may cause structural changes in the
network, because of which the power angle curve prior to fault, during the fault and post
fault may be different (See example 9.8). Due to these reasons, a general stability criteria
for transient stability cannot be established, as was done in the case of steady state
stability inamely Ps > 0). Stability can be established, for a given fauly, by actual solution
of the swing equation. The time taken for the fault to be cleared (by the circuit breakers)
is called the clearing time. If the fault is cleared fast enough, the probability of the system
remaining stable after the clearance is more. If the fault persists for a longer time,

likelihood of instability is increased.

Critical clearing time is the maximum time available for clearing the fault, before the
system loses stability. Modemn circuit breakers are equipped with auto reclosure facility,
whierein the breaker automatically recloses after two sequential openings. If the Fault still

persists, the breakers open permanently. Since most faults are transient, the first reclosure



is in general successful. Hence, transient stability has been greatly enhanced by auto
closure breakers.

Some common assumptions made during transient stability studics arc as follows:
I. Transmission line and synchronous machine resistances are neglected. Since
resistance introduces a damping term in the swing equation, this gives

pessimistic results.

™)

Effect of damper windings is neglected which again gives pessimistic results.

Variations in rotor speed are neglected.

o

Mechanical input to the generator is assumed constant. The governor control

loop is neglected. This also leads to pessimistic results.

5. The generator is modeled as a constant voltage source behind a transient
reactance, neglecting the voltage regulator action.

6. Loads are modeled as constant admittances and absorbed into the bus

admittance matrix.

The above assumptions, vastly simplify the equations. A digital computer program for
transicnt stability analysis can casily include more detailed generator models and effect of
controls, the discussion of which is beyond the scope of present treatment. Studics on the
transicnt stability of an SMIB system. can shed light on some important aspects of
stability of larger systems. One of the important methods for studying the transient
stability of an SMIB system is the application of equal-area criterion.

5.8 EQUAL- AREA CRITERION

Transicnt stability assessment of an SMIB system is possible without resorting to actual
solution of the swing equation, by a method known as equal-arca criterion. In a SMIB
system, if the system is unstable after a fault is cleared, 8(1) increases indefinitely with
time, till the machine loses synchronism. In contrast, in a stable system. 8(t) reaches a
maximum and then starts reducing as shown in Fig.5.6.
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Fig.5.6 Swing Curve (4 Vst) for stable and unstable system

Mathematically stated,
dé (¢ =0
dit

some time after the fault is cleared in a stable system and ‘;—6 > 0, for a long time after
1

the fault is cleared in an unstable system.
Consider the swing equation (21)
MEL_p _p-p
dr’

d’s P

d® M

Multiplying both sides by 2%‘:— . we get

This may be written as

L‘.("_"Jz 46 E
die|l dr Tdt M

Integrating both sides we get



’
[ pds (5.45)
.

5
For stability :ll—' =0, some time after fault is cleared. This means

)
[pds =0 (5.46)
4,

The integral gives the arca under the Py~ 8 curve. The condition for stability can be. thus
stated as follows: A SMIB system is stable if the arca under the P, - & curve, becomes
zero at some value of 8. This means that the accelerating (positive) arca under P, — &
curve, must equal the decclerating (negative) area under P, — & curve. Application of

equal arca criterion for several disturbances is discussed next.
5.9 SUDDEN CHANGE IN MECHANICAL INPUT

Consider the SMIB system shown in Fig. 5.7.
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Fig.57 SMIB System

The clectrical power transferred is given by

P =P, sind
E,V

. - L
X, 4x,

Under steady statc Py = Pe. Let the machine be initially operating at a steady state angle
8, at synchronous speed .. with a mechanical input P, as shown in Fig.5.8 ( point a).



Fig.5.8 Equal area criterion-sudden change in mechanical input

If there is a sudden step increase in input power to Py the accelerating power is positive
(since Py > Pp,,) and power angle & increases. With increase in 8, the clectrical power P,
increases, the accelerating power decreases. till at 6 = 8y, the electrical power matches the
new input Py,;. The arca A, during acceleration is given by

Ar= [ (P - p)do

=P (6, -8,)-P_ (cosd —cosé,) (5.47)
At b, even though the accelerating power is zero, the rotor is running above synchronous
speed. Hence, 6 and P, increase beyond b, wherein P, < Py, and the rotor is subjected to
deceleration. The rotor decelerates and speed starts dropping, till at point d, the machine
reaches synchronous speed and 8 = 8. The arca A;. during deceleration is given by

Ar= [T (B = P)db = P, (c088, ~cO88 )~ Poy (B =5,) (5.48)

By equal arca criterion A; = A2. The rotor would then oscillate between &g and Sy at its
natural frequency. However, damping forces will reduce subsequent swings and the
machine finally settles down to the new steady state value 8; (at point b). Stability can be
maintained only if arca A; at least cqual to A|. can be located above Py . The limiting

casc is shown in Fig.5.9, where A2 is just equal to Aj.



Pe N

S o
17438

Prncs N

O~ b 2

Fig.5.9 Maximum increase in mechanical power

Here 8, is at the intersection of P, and Pg;. If the machine does not reach synchronous
speed at d. then beyond d. P decrcases with increase in 8. causing & to increasc
indefinitely. Applying equal arca criterion to Fig.5.9 we get

Al=Axn
From (5.47) and (5.48) we get

P,@,.—8,)="P_ (cosé —cosd_. )
Substituting P, = F,_ sind__ , we get

(8 e — 80 J5ind o +cOSE ., =cOSE, (5.49)
Equation (5.49) is a non-lincar cquation in duux and can be solved by trial and error or by
using any numerical method for solution of non-lincar algebraic equation (like Newton-
Raphson. bisection ctc). From solution of Smas, Pmi can be calculated. Pyi — Pmo will give

the maximum possible increase in mechanical input before the machine looses stability.

5.10 NUMERICAL EXAMPLES

Example 1: A 50Hz 4 pole turbo alternator rated 150 MVA, 11 kV has an inertia
constant of 9 MJ / MVA. Find the (a) stored cnergy at synchronous speed (b) the rotor
acceleration if the input mechanical power is raised to 100 MW when the clectrical load
is 75 MW, (c) the speed at the end of 10 cycles if acceleration is assumed constant at the

initial value.



Solution:

(a) Stored energy = GH = 150 x 9= 1350 MJ
(b) P,=Py—P. =100-75=25MW

:—GH =—l350 =0.15 MJ -s /¢
180f 180 x50
0.15 d ‘f =25
dr*
lh 2
Acceleration a =d—_=i=l66.6 /s’
dt® 015

| 1
= 1666 x— “m/s”
P
166.6 2 . /s
= O XK = W — 1y
P 360"

.2 1
= 1666 x — x — x 60 rpm/s
P 360

= 13.88 rpm/s
* Note “c = clectrical degree; °m = mechanical degree; P=number of poles.

10
(c) 10 cycles = =— =025
2 50

Rotor speed at end of 10 cycles = Ng +a x 0.2 = 1500 + 13.88 x 0.2 = 1502.776 rpm.
Example 2: Two 50 Hz gencrating units operate in parallel within the same plant, with
the following ratings: Unit 1: 500 MVA. 0.8 pf. 13.2 kV. 3600 rpm: H = 4 MJ/MVA;

Unit 2: 1000 MVA, 09 pf, 13.8 kV, 1800 rpm: H =5 MJ/MVA. Calculate the equivalent
H constant on a base of 100 MVA.

Solution:
G-n
Hyoom iy %= 43220 20 MIMVA
(e 100
Gl-h
Hypem = Hyd = 5x =50 MI/MVA
G e



H_, =H, +H,=20+50 =70 MIMVA
This is the equivalent incrtia constant on a base of 100 MV A and can be used when the

two machines swing coherently.

Example 3: Obtain the power angle relationship and the generator internal emf for (i)
classical model (ii) salient pole model with following data: xg = 1.0 pu : xg = 0.6 pu = V,
= 1.0pu: Iy= 1.0 pu at upf

Solution:
{i} Classical model: The phasor diagram is shown in Fig P3.

Fig.P3 Example 3, caseii}

|| = v + (2, 5, F = J(1L0F +(L0x10f =1414

I x 1.0
f=tan™' =% —pan~' —— = 45°
1.0

S Eg= 1414 L4450
If the excitation is held constant so that |Ej| = 1.414, then power output
1414 = 1.0 sind
- = 1.0 sin
1.0

=1.414=in#

(ii) Salient pole: From Fig (5), we get using (41a) to (41d)
Ep=Eg+yxy=Vicosd+Iyxy

=Vicosd+ Iy sin b xq



(*0~- 0", since we are considering upf)
Substituting given values we get
Eg=cos § +sind.
Again from Fig (9.5) we have
Ed=Visind=lgxq
S Vpsind —1gxg=0
Visind - 1 cos 8 x4=0
Substituting the given values we get
0=sind—0.6cosd
We thus have two simultancous equations.
Eg=cos &+ sin
0= sind - 0.6 cos b
Solving we get & = 30.96°
E,=1372pu
If the excitation is held constant, then from (42)
P~ 1.372sin 8 +0.333 5in 28

Example 4: Dctermine the steady state stability limit of the system shown in Fig 8, if V,

= 1.0 pu and the reactances are in pu.

oo

R [~

. ™ I
Eﬁé \}k@ lalo

- “a |

Fig. P4 Example 4

Solution:

_V,£0 —1.0£0°  1.0£0 —1.0£0°
7 j1.0 = J1.0

Current I

Eg 26 =V, 20 +j1.0(1)



j1.0(1.026 -1.020°)
jlo

=120 +

= cos 0 + 3 sinf + cosB + j sinfl - 1.0
= 2¢os0 — 1 + j 25in0
When maximum power is transferred § = 90° which means real part of E= 0
“2cos0-1=0
0-cos” 0.5=60°

|E,| =2xsin60°= 1.732

E; = 1.732 £90° (for maximum power)

5
Sirady sinic stability limit = S0 220 _ 0866 pa
1.0+1.0
Example 5: A 50 Hz synchronous gencrator having an internal voltage 1.2 pu,

H = 5.2 MJ/MVA and a reactance of 0.4 pu is connected to an infinite bus through a
double circuit line, each line of reactance 0.35 pu. The gencrator is delivering 0.8pu
power and the infinite bus voltage is 1.0 pu. Determine: maximum power transfer.,
Steady state operating angle. and Natural frequency of oscillation if damping is
neglected.

Solution: The onc line diagram is shown in Fig P5.

Y
g Jo-35
Ot A
Jok . —
Jo-35

Fig . PS Example 6

3
(a)x=0.4+¥=0575pu



X 0575
(b P:= an si.nE\u

P 0.8
A6, =sin” —— =sin™ [—}= 1254
P 08T

(c) Py = Pyyy cos i, = 2.087 cos (22.547)
= 1.927 MW {pu) elec rad.

H 5.2 "
Mipu)= — = —— =0.0331 5 felec rad
I1f Il =50
F 1.927
Without damping s = + '1’—’ =f .||
o ! M / 0033l
=%j7.63 radfsec = 1.21 Hz

Matural frequency of oscillation w, = 1.21 Hz.

Example 6: In example .6, if the damping is 0.14 and there is a minor disturbance of A &

= 0.15 rad from the initial operating point, determine: (a) wy (b) £ (o) ay (d) setting time

and {e) expression for 5.
Solution:

P
{a) = '—’ = ’ 1 =7.63 md/sec = 1.21 Hz
M 0.0331
me=2 ] 1811 oo
2UM P 2 0.0331 =1.927

(c) oy = w, ,}']—.5 : =?.ﬁ31.1'1-[u_17?]’ =T33 radlsec = 1.16 He

1 1
{d) Setting time =41 =4 =4

* = 18925
fw, 0.277 = 7.63

ie) A 8, =0.15rad = 859"

B =cos! E=cos! 0.277=735"

) Ad i
&= 8+ — sin{..,'n.l' +#)
Jime?
= 23547 4 B0 emesn g 3y s 73 .07)

a.|||] - 0277°



=22.54°+ 894 ¢ ' sin (733t + 73.9")
The variation of delta with respect to time is shown below. It can be observed that the
angle reaches the steady state value of 22.54° after the initial transient. It should be noted

that the magnitudes of the swings decrease in a stable system with damping.

no

25 4
FEL
.

= p— o - — —

0 - -

m . i ' 4 "

o on ' 18 z 2n o
Taroineconts)

Fig.P6 Swing Curve for example 7

Example 7: In example 6, find the power angle relationship
(i) For the given network
(ii) 1If a short circuit occurs in the middle of a line
(iii)  If fault is cleared by line outage

Assume the gencrator to be supplying 1.0 pu power initially.

Solution:
(i) From example 6. Pqu = 2.087, Pe = 2.087 sin &.
(i) If a short circuit occurs in the middle of the line, the network equivalent
can be draw as shown in Fig. 12a.



Fig.P7a Short circuit in middle of line

The network is reduced by converting the delta to star and again the resulting star to delta
as shown in Fig P7a, P7b and P7c.




The transfer reactance is 1.55 pu. Hence.

1210

Pmam = =0744 : Pe=0T74sind
1.55

{iii) When there is a line outage
X=04+4+035=0.75

1.2=1.0
F, =— = |
T s
P = 1.6 sind
Example 8: A generator supplies active power of 1.0 pu to an infinite bus, through a

lossless line of reactance x, = (L6 pu. The reactance of the generator and the connecting
transformer is 0.3 pu. The transient internal voltage of the generator is 1.12 pu and
infinite bus voltage is 1.0 pu. Find the maximum increase in mechanical power that will

not cause instability.

Solution:

_LI2x1.0

Po = =1.244
e 0.9 e

Puo = Peo = 1.0 = Pay sim 8 = 1.244 sin &g

1.0
‘. B =sin’ i 53.47" = 0.933 rad.

The above can be solved by N—R method since it is of the form fifmm) = K. Applying M-

R method, at any iteration ‘1, we get

iri K - Jr{h .
AfL = ———mu
dr
di !
d&df*..ﬁ Sl — 8. )coss 2L

(This is the derivative cvaluated atavalue of & = & "' ) 800 =81 a5
Starting from an initial guess of Ggax between % to 7, the above equations are solved

steratively nill A &7 = &. Here K = cos iy = 0.595. The computations are shown in table

P&, starting from an initial guess &) = 1.745 rad.



Table P8

Intcraction df
6“' 1 Jarl A(i“' 6".“
r . dé_‘"' f( e ma maa
1 1.745 | - 0.1407 | 0.626 0.22 1.965

(5]

1.965 | -0.396 0568 | —0.068 | 1.897
1.897 | -0.309 0592 | -0.0097 | 1.887
1.887 | -0.2963 0596 | —0.0033 | |.883

W

Since A&, is sufficient by small, we can take
Smax = 1.883 rad = 107.88"
& =180-6,, =72.1°
Pmi = Po Sin Oy = 1.183
Maximum step increase permissible is Py — Py, = 1183 - 1.0=0.183 pu

Example 9: Transform a two machine system to an equivalent SMIB system and show

how equal arca criterion is applicable to it.

Solution: Consider the two machine system show in Fig.P9.

Fig.P9 Two machine system under steady state (neglecting losses)

Py=-F,=F,: F,=-F,=P,

The swing cquations are



Simplifying. we get
d’(5,—6;) M+ M,

2 = "FM_E
dr’ MM, ’
or rq'ﬂ:f'-_ﬂ
di~
M M
where =—
Mz M, +M
& = & -8
p=—"5%E .

Xy X+ X,
This relation is identical to that of an SMIB system in form and can be used to determine

the relative swing (5; — &;) between the two machines to assess the stability.
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Code No: 09A60203 RO9 Set No. 1

III B.Tech II Semester Examinations, April/May 2012
COMPUTER METHODS IN POWER SYSTEMS
Electrical And Electronics Engineering
Time: 2 hours Max Marks: 75
Answer any FIVE Questions
All Questions carry equal marks

1. Three generators are rated as follows: Generator [:100 MVA, 33 kV, reactance
10%, Generator 2:150 MVA, 32 kV, reactance 8% and Generator 3:110 MVA, 30
kV, reactance 12%. Determine the reactance of the generators corresponding to
base values of 200 MVA and 35 kV. [15]

2. (a) Define the following terms with suitable example.
1. Graph
il. Tree
iii. Co-Tree
iv. Cut-set
v. Basic Loop.
(b) Explain the incidence matrices: A A, Band C. [7+8]
3. Differentiate between steady state stability and transient stability of a power sys-
tem. Discuss the factors that affect:
(a) steady state stability, and
(b) transient state stability of the system. [15]

4. Develop load flow equations suitable for solution by N-R method using rectangular
coordinates when only PQ buses are present. [15]

5. The following is the system data for load flow solution. The line admittances are
given in table 1 and active and reactive powers are given in table 2.

| - | - | 140 | Slack bus | 7,

2 [ v for [ - [ PQbus |
3, ! 3'5 ! 0',3 L] = L] Bo,b‘ils,
Bus Code | Impedance
T | Table 1:
Lo -
1% | 38
23| 410

Find the voltages at the end of first iteration by using G-S method. [15]
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6. A power plant has two generators of 10 MVA. 15% reactance each and two 5 MVA
generators of 10% reactance paralleled at a common bus bar from which load is
taken through a number of 4 MVA step up transformers each having a reactance
of 5%. Determine the short circuit capacity of the breakers on the:

(a) low voltage, and

(b) high voltage side of the transformer. [15]
7. For the 3-bus system shown in figure 3 obtain Zbus. [15]
oo @)
G o
100 ‘?) IR 0‘
w-zé ' Dipas
4 a
Figure 3:

8. (a) Explain breifly the two forms of instability in power system.

(b) Does over compensation of a transmission line affects the stability of a power
sytem? Justify the answer. [7+8]
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111 B.Tech Il Semester Examinations April/May 2012
COMPUTER METHODS IN POWER SYSTEMS
Electrical And Electronics Engineering
Time: 3 hours Max Marks: 75
Answer any FIVE Questions
All Questions carry equal marks

1. (a) Distinguish between steady state and dynamic stability of a power system
network.

(b) What is meant by power angle curve and write its significance.
(c) How can the steady state stability of power system be increased? [5+5+5]

2. (a) For the power system network shown in figure 1, draw
1. Graph
ii. Tree
tii. Co-Tree
iv. Basic loops
v. Basic cut-sets.
(b) Write the network performance equations. [7+8]

@=

Figure 1:

3. Explain the p.u. system of analyzing power system problems. Discuss the advan-
tages of this method over the absolute method of analysis. [15]

4. A synchronous generator is operating at an infinite bus and supplying 45% of its
peak power capacity. As soon as a fault occurs, the reactance between the generator
and the line becomes four times its value before the fault. The peak power that
can be delivered after the fault is cleared is 70% of the original maximum value.
Determine the critical clearing angle. [15]

5. A 65-MVA star-connected 16 kV synchronous generator is connected to 20kV/120
kV, 75 MVA A/Y transformer. The sub-transient reactance of the machine is 0.32
p-u. and the reactance of transformer is 0.1 p. u. When the machine is unloaded.
a 3-phase fault takes place on the HT side of the transformer. Determine:
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(a) the sub transient symmetrical fault current on both sides of the transformer,
(b) the maximum possible value of the d.c. current. Assume 1 p.u. generator

voltage. [15]
6. (a) Write the algorithm for FDLF method.
(b) Compare G-S method and N-R methods. [8+7]

7. Consider the 3-bus system shown in figure 2. The PU line reactances are indicated
on the fig. The line resistances are negligible. The magnitudes of all the three bus
voltages are specified to be |V,| = 1.00 pu, [V 3] = 1.04 pu, |V 3] = 0.96 pu. The
bus powers ified in below table . o

Bus | Real demand | Reactive "demand | Real peneration | Reactive generation |
1.0 Qd1-0.6 | }gl-_o.j Qg! (unspecified) |

Qg2 (unspecified)

Qg3 (unspecified) |

[15]

Figure 2:

8. The bus impedance matrix for a 3-bus system is

j03  jo2 j0275
Zy —[j 02 jO4 jO025
j0275 j025 j0418

There is a line outage and the line from I to 2 is removed. Using the method of
building algorithm, determine the new bus impedance matrix. [15]
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1. Two generators rated at 10 MVA 13.2 kV and 15 MVA 13.2kV are connected in
parallel to a bus bar. They feed supply to two motors of inputs 8 MVA and 12 MVA
respectively. The operating voltage of motors is 12.5 kV. Assuming base quantities
as 50 MVA and 13.8 kV draw the reactance diagram. The percent reactance for
generators is 15% and that for motors is 20%. [15]

2. (a) Derive the static load flow equations of a n-bus system.
(b) Explain the advantages and disadvantages of G-S method. [8+7]

3. A motor is receiving 25% of the power that it is capable of receiving from an infinite
bus. If the load on the motor is doubled, calculate the maximum value of load angle
during the swinging of the rotor around its new equilibrium position. [15]

4. (a) Compare G-S method and N-R methods.

(b) Write the algorithm for N-R method using rectangular coordinates when PV
buses are absent. [7+8]

5. Derive the formulae for Z,,, using building algorithm for the addition of link with
mutual coupling to other elements. [15]

6. A 50 Hz synchronous generator is connected an infinite bus through a line. The
p.u. reactances of generator and the line are j0.2 p.u. and jO.4 pu. respectively.
The generator no load voltage is 1.1 p.u. and that of infinite bus is 1.0 p.u. The
inertia constant of the generator is 4 MW-sec/MVA. Determine the frequency of
natural oscillations if the generator is loaded to 80% of its maximum power transfer
capacity and small perturbation in power is given. [15]

7. A 3 phase, 30 MVA, 6.6kV alternator having 10% reactance is connected
through a 30 MVA, 6600/33,000 v delta-star connected transformer of 5% reac-
tance to a 33 kV transmission line having a negligible resistance and a reactance
of 4 ohms. At the receiving end of the line there is a 30 MVA, 33,000/6600 volt
delta-star connected transformer of 5% reactance stepping down the voltage to 6.6
kV. Both the transformers have their neutral solidly grounded. Draw the one-line
diagram and the positive, negative and zero sequence networks of this system and
determine the fault currents for single line grounded fault at the receiving station
L.V. bus bars.For generator assume -ve sequence reactance as 70% that of + ve

sequence. [15]
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8. (a) For the 3-bus system shown in figure 4, let a new bus (bus no.4) be added
with bus no.2 through a transmission line of impedance (0.01+)0.3)p.u. Obtain
Y, for the new system?

(b) Explain why Yo, is often used in load flow study. [15]
) (1

T’I’ omess T“[

.
ONG=}5 %‘ﬂ
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Answer any FIVE Questions
All Questions carry equal marks

(a) Wat is the load flow study and explain the need for load flow solution.

(b) What are the assumptions in SLFE(static load flow equations) and derive the
approximate load flow equations. [6+9]

. Four bus bar sections have each a generator of 40 MVA 10% reactance and a bus

bar reactor of 8% reactance. Determine the maximum MVA fed into a fault on any
bus bar section and also the maximum MVA if the number of similar bus bars in
sections is very large. [15]
(a) What are the assumptions in FDLF method?

(b) Compare the different methods of load flow techniques. [3+12]

(a) Derive the formula for power transfer through a transmission line.

(b) A 4-pole .50 Hz, 22 kV turbo alternator has a rating of 100 MVAp.f 0.8
lag. The moment of inertia of rotor is 9000 kg-m*. Determine M and H. [7+48]

. A 50 Hz, three-phase synchronous generator delivers 1.00 p.u. power to an infinite

busbar through a network in which resistance is negligible. A fault occurs which
reduces the maximum power transferable to 0.40 p.u. whereas, before the fault,
this power was 1.8 p.u. and, after the clearance of the fault 1.30 pu. By the use
of equal area criterion, determine the critical angle. [15]

(a) Prove that when there is no mutual coupling, the diagonal and off-diagonal
elements of Yy, can be computed from Y;; — Xy; and Y;; — —v;;.

(b) Define the terms graph, tree. co-tree, tree branches, and links.
Write the relation between branches, links & no. of nodes. [7+8]

. A three-phase transmission line operating at 33 kV and having a resistance and

reactance of 5 ohms and 20 ohms respectively is connected to the generating station
bus bar through a 5.000 kVA step-up transformer which has a reactance of 6 per
cent, which is connected to the bus bar being supplied by two altemators, one
10,000 kVA having 10% reactance, and another 5,000 kVA having 7.5% reactance.
Calculate the kVA at a short-circuit fault between phases occurring

(a) at the high voltage terminals of the transformers
(b) at load end of transmission line. [15]

. Explain the algorithm for the addition and removal of lines in power system. [15]



17. Question Bank

POWER SYSTEM ANALYSIS

Unit — |

1. Define the following terms with suitable examples
I. Tree ii. Branches iii. Links iv. Co-Tree v. Basic loop vi. Path

2. Form Yasus for the given power system shown in figure with reactance value
in p.u.? Select arbitrary directions.

,\"D ¥ ie 10,2 B

(3)
3. For the figure below, draw the tree and the corresponding co-tree. Choose a tree of

your
choice and hence write the basic loops & basic cut-set schedule.

4. For a 4-bus system shown the shunt admittances at the buses are neglected and line
impedances
are as under:
Line (bus to bus) 1-2 2-3 34 14 T T T T T T |

R(pu) 0.025 0.02 0.05 0.04 TT1 TT2 TT

X(pu) 0.10 0.08 0.20 0.16
(a) Assume that the line shown dotted (from bus 1 to bus 3)
Is not present.formulate Ypus
(b) Which element of Yys are affected when the line from
bus1 to bus 3 is added. If the pu impedance of this line is

0.1+ j0.4, find the new Ypus 4——




5. Explain the relationship between
i. The basic loops and links
ii. Basic cut-sets and the number of branches

Unit — 11
1. Derive the bus admittance matrix by singular transformation method.
2. Represent the power system primitive network component in

I. Impedance form ii. Admittance form
3. Build Zwus for the 3-bus system connection given as:
element bus code impedance
1 1-2 jo.1
2 1-2 j0.25
3 1-3 jo.1
4 2-3 jo.1
4. The parameters of a 4-bus system are as under: Find Zous
Bus code Line impedance Charging admittance
(pu) Ypa/2(pu)
1-2 0.2+j0.8 j0.02
2-3 0.3+j0.9 j0.03
2-4 0.25+1 j0.04
3-4 0.2+j0.8 j0.02
1-3 0.1+j0.4 j0.01

5. For the network as shown in figure. Obtain Znus take Bus-3 as reference Bus.

O )

—T i0s
i0.3

jn.2 i0.4

Unit — 111 @
1. What are the advantages &
disadvantages of
1.G-S method ii. N-R method
2. Describe load flow solution with P.V buses using G-S method.
3. Derive the basic equations for load flow studies and also write the assumptions and
approximations to get the simple equations.
4. With a flow chart, explain G-S method for load flow studies



5. Below fig shows a five bus system. Each line has an Z=0.05+j0.15pu. the line shunt
admittances
may be neglected.The bus power and voltage specifications are given below

N

Unit — 1V
1. Describe the Newton-Raphson method for the solution of power flow equations
in power systems deriving necessary equations using rectangular co-ordinates
Derive the expression for diagonal and off-diagonal elements of Jacobin matrix of
N-R (Polar form) method.

With a flow chart, explain Fast decoupled load flow method
With a flow chart, explain NR method in polar co-ordinates for load flow studies
Discuss the Comparison of different methods.

Unit-5

N

o ks w

1.
L (MV A) ase(new) (KVLr ]j g old
Prove that Zoyimew) = Loniald) X —mesetnew) o 2 _LL Base old
2. Explain the importance 6f Ber-unit@ydtemots ~ (KVir)hase ot
3. How are reactors classified? Explain the merits and demerits of different
types of system protection using reactors.
4. Draw the pu impedance diagram for the system shown in figure below. Choose
Base
MVA as 100 MVA and Base KV as 20 KV.

o 120 ohms | = % | /7 somva
= | S< | 18 KV
9OMVA 80 MVA X= 9%

20 KV 20 MVA

201200 KV 500K\, 48MN-+B4MVAR 200 KV /120 KV
X = 9% X =16% J

X=20%

5. Obtain pu impedance diagram of the power system of figure below. Choose base
guantities as 15 MVA and 33 KV.
Generator: 30 MVA, 10.5 KV, X = 1.6 ohms.
Transformers T1 & T2: 15 MVA, 33/11 KV, X = 15 ohms referred to HV
Transmission line: 20 ohms / phase
Load: 40 MW, 6.6 KV, 0.85 lagging p.f.

(?_I_%r% I line i %%—l




Unit-6
1. What are symmetrical components? Explain.
2. Derive an expression for power in a 3-phase circuit in terms of
symmetrical components
3. Draw zero sequence network for the system shown in figure below

- Xo=j0.05
= Xj0=j0.2 =
B 7 ¥
Xor L x|—1005 \h X0 =j0.15 J_ﬁ/ A A
= jo.05 T A )

L
A

Xp=J0.1 % \]L_L

4.The line currents in a 3 phase supply to an un balanced load are respectively
la=10 +j20; Ib=12 - j10; Ic = -3 - }5 Amp. phase sequence is abc. Determine
the sequence components of currents.

4. Derive an expression for the fault current for a line-to-line fault at an unloaded
generator.

Unit-7
1. Explain the terms
a) Steady state stability b) Transient stability ¢) Dynamic stability

2. Discuss various methods of improving steady state stability & transient
stability

3. A 3 phase line is 400 Km long. The line parameters are
r=0.125 ohm/Km; x = 0.4 ohm/Km and y = 2.8x10° mhos/Km.

Find steady state stability limit if Vsl = IVRrI = 220KV .

4. A salient pole synchronous generator is connected to an infinite bus via a line.
Derive an expression for electrical power output of the generator and draw p-6
curve.

5. What are the factors that affect the transient stability? Explain in detail.

Unit-8

1. What are the assumptions made in deriving swing equation.

Explain point by point method of determine swing curve.

3. Derive and explain the equal area criterion for stability of a power system.

N



4. Derive the formula for calculating critical clearing angle.

5. For the system shown in figure below, a 3 phase fault occurs at the middle of one
of
the transmission lines and is cleared by simultaneous opening of circuit breakers
at both ends. If initial power of generator is 0.8 pu, determine the critical clearing
angle.
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18. Assignment topics

1. Draw the reactance diagram for the power system shown in Fig.1. Neglect resistance and
use a base of 100 MVA, 220 kV in 50 Q line. The ratings of the generator, motor and
transformer are given below.

é*( @—&“}‘—“—égﬂ %U-;[—D\%D %

Flg. 1
Generator: 40 MVA, 25 kV, X” = 20%
Synchronous motor : 50 MVA, 11 kV, X" = 30%
Y — Y Transformer : 40 MVA, 33/220 kV, X =15%
Y - A 30 MVA, 11/220 kV, (A/Y), X =15% (16)

2. Draw the structure of an electrical power system and describe the components of the system
with typical values (16)
3. Obtain the per unit impedance (reactance) diagram of the power system shown in Fig.3
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Fig. 3
One-line representation of a simple power system.

Generator No. 1: 30 MVA, 10.5 kV, X’ = 1.6 Ohm

Generator No. 2: 15 MVA, 6.6 kV, X" = 1.2 Ohm

Generator No. 3: 25 MVA, 6.6 kV, X’ = 0.56 Ohm

Transformer T4 (3phase) : 15 MVA, 33/11 kV, X = 15.2 Ohm per phase on HT side
Transformer Tz (3phase) : 15 MVA, 33/6.2 kV, X = 16 Ohm per phase on HT side
Transmission line : 20.5 Ohm/phase

Load A : 15 MW, 11kV, 0.9 p.f. lagging

Load B : 40 MW, 6.6 kV, 0.85 lagging p.f. (16)
4. Explain the modeling of generator, load, transmission line and transformer for power flow,
short circuit and stability studies. (16)

5. Choosing a common base of 20 MVA, compute the per unit impedance (reactance) of the
components of the power system shown in Fig.5 and draw the positive sequence
impedance (reactance) diagram.
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Fig. 5
Gen 1:20 MVA, 10.5kV, X" =1.4 Ohm
Gen 2:10 MVA, 6.6 kV, X" = 1.2 Ohm
Tr1:10 MVA, 33/11 kV, X = 15.2 Ohm per phase on HT side
Tr2:10 MVA, 33/6.2 kV, X = 16.0 Ohm per phase on HT side

Transmission line : 22.5 Ohms per phase (16)
6. (i) What are the step by step procedures to be followed to find the per-unit impedance
diagram of a power system? (4)
(i) Draw the structure of an electrical power system and describe the components of the
system with typical values. (12)
7. Write short notes on:
(i) Single line diagram (5)
(i) Change of base. (5)
(iii) Reactance of synchronous machines. (6)

8. A 120 MVA, 19.5 kV Generator has a synchronous reactance of 0.15 p.u and it is
connected to a transmission line through a Transformer rated 150 MVA, 230/18 kV
(star/delta) with X = 0.1 p.u.

(i) Calculate the p.u reactance by taking generator rating as base values (5)

(i) Calculate the p.u reactance by taking transformer rating as base values. (5)

(i) Calculate the p.u reactance for a base value of 100 MVA and 220 kV on H.T  side
of transformer. (6)

1. Derive load flow algorithm using Gauss — Seidel method with flow chart and discuss the

advantages of the method. (16)
2. Derive load flow algorithm using Newton-Raphson method with flow chart and state the
importance of the method. (16)

3. Explain clearly the algorithmic steps for solving load flow equation using Newton — Raphson
method (polar form) when the system contains all types of buses. Assume that the

generators at the P-V buses have adequate Q Limits. (16)
4. Explain the step by step procedure for the NR method of load flow studies. (16)
5. Find the bus admittance matrix for the given network. Determine the reduced admittance

matrix by eliminating node 4. The values are marked in p.u. (16)
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6. Find the bus impedance matrix for the system whose reactance diagram is shown in fig. All
the impedances are in p,u. (16)

Ol Poen__|®
s msmenceend G 5 TG
— s h j0.05
8 j1.25 |
[ 1o P2 Reference bus
7. (i) Derive the power flow equation in polar form. (8)
(i)Write the advantages and disadvantages of Gauss-Seidel method and
Newton-Raphson method. (8)
8. The parameters of a 4-bus system are as under:
Bus code Line impedance Charging admittance
(pu) (pu)
1-2 0.2+j0.8 j0.02
2-3 0.3+j0.9 j 0.03
2-4 0.25+j1.0 j 0.04
3-4 0.2 +j0.8 j0.02
1- 0.1 +j04 j 0.01
Draw the network and find bus admittance matrix. (16)
9. With a flow chart, explain the NR Iterative method for solving load flow problem. (16)

10. (i) Compare Gauss-Seidel method and Newton-Raphson method of load flow studies (6)
(i) Fig.12 shows a three bus power system.
Bus 1 : Slack bus, V= 1.05/0°p.u.
Bus 2 : PV bus, V=1.0p.u. Pg=3 p.u.
Bus 3 : PQbus, Pi=4 p.u., Q=2 p.u.
Carry out one iteration of load flow solution by Gauss Seidel method. Neglect limits on
reactive power generation. (10)



1. A generator is connected through a transformer to a synchronous motor the sub transient
reactance of generator and motor are 0.15 p.u. and 0.35 p.u. respectively. The leakage
reactance of the transformer is 0.1 p.u. All the reactances are calculated on a common base. A
three phase fault occurs at the terminals of the motor when the terminal voltage of the generator
is 0.9 p.u. The output current of generator is 1 p.u. and 0.8 p.f. leading. Find the sub transient
current in p.u. in the fault, generator and motor. Use the terminal voltage of generator as
reference vector. (16)

2. Explain the step by step procedure for systematic fault analysis using bus impedance matrix.
(16)

3. A60 MVA, Y connected 11 KV synchronous generator is connected to a 60 MVA, 11/132 KV
A/Y transformer. The sub transient reactance X"y of the generator is 0.12 p.u. on a 60 MVA
base, while the transformer reactance is 0.1 p.u. on the same base. The generator is unloaded
when a symmetrical fault is suddenly placed at point p as shown in Fig. 3 Find the sub transient
symmetrical fault current in p.u. amperes and actual amperes on both side of the transformer.
Phase to neutral voltage of the generator at no load is 1.0 p.u. (16)
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Fig. 3

4. A three —phase transmission line operating at 33 KV and having a resistance and reactance
of 5 Ohms and 15 Ohms respectively is connected to the generating station bus-bar through a
5000 KVA step up transformer which has a reactance of 0.05 p.u. Connected to the bus-bars
are two alternators, are 10,000 KVA having 0.08 p.u. reactance and another 5000 KVA having
0.06 p.u. reactance. Calculate the KVA at a short circuit fault between phases occurring at the
high voltage terminals of the transformers. (16)

5. A synchronous generator and a synchronous motor each rated 25 MVA, 11 KV having 15%
sub-transient reactance are connected through transformers and a line as shown in fig. The
transformers are rated 25 MVA< 11/66 KV and 66/11 KV with leakage reactance of 10% each.
The line has a reactance of 10% on a base of 25 MVA, 66 Kv. The motor is drawing 15 MW at
0.5 power factor leading and a terminal voltage of 10.6 KV. When a symmetrical 3 phase fault
occurs at the motor terminals. Find the sub-transient current in the generator, motor and fault.

Sﬂcn - ’ Lina % g ‘5W
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6. A three phase power of 700 MW is to be transmitted to a substation located 315 kM from the
source of power. For a preliminary line design assume the following parameters:
Vs=1.0p.u.,, V;+ 0.9 p.u. A = 5000 km ; z.= 320 Q, and S = 36.87°.
(i) Based on the practical line load ability equation, determine a nominal voltage level for

the transmission line. (8)
(ii) For the transmission voltage level obtained in (i) Calculate the theoretical maximum
power that can be transferred by the transmission line. (8)

7. A 25,000 KVA, 13.8 kV generator with X’q= 15% is connected through a transformer to a bus
which supplies four identical motors as shown in Fig. 7 The sub transient reactance X"y of each



motor is 20% on a base of 5000 KVA, 6.9 kV. The three-phase rating of the transformer is
25,000 KVA, 13.8/6.9 kV, with a leakage reactance of 10%. The bus voltage at the motors is 6.9
kV when a three-phase fault occurs at point p. for the fault specified, determine (i) the sub
transient current in the fault (i) the sub transient current in breaker A and (iii) the symmetrical
short-circuit interrupting current in the fault and in breaker A. (16)

()

C! g -+ Ml
s E{Hw*@w

Fig.7 one line diagram
8 Determine Z,, for the network shown below in Fig. 8 where the impedances labeled 1
through 6 are shown in per unit. Preserve all buses. (16)
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Fig. 8
Fig. 8 Branch impedances are in p.u. and branch numbers are in parentheses.
8. With a help of a detailed flowchart, explain how a symmetrical fault can be analyzed using
Zow? (16)

8. (i) For the radial network shone below a three phase fault occurs at F. Determine the fault
current and the line voltage at 11 kV bus under fault conditions. (6)
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(i) Explain the procedure for making short-circuit studies of a large power system networks
using digital computers. (10)

9. Two synchronous machines are connected through three phase transformers to the
transmission line shown in Fig.11 the ratings and reactance of the machines and
transformers are
Machine 1 and 2 : 100 MVa, 20kV;  X'g= Xi=X2=20%

Xo = 4%, Xn=5%
Transformers Tyand T2 : 100 MVA, 20 A/345 YKV ; X = 8%.
On a chosen base of 100 MVA, 345 kV in the transmission line circuit the line reactances are
X1 =Xz =15% and X, = 50%. Draw each of the three sequence networks and find the zero
sequence bus impedance matrixes by means of Zys building algorithm. (16)

4 ApHNRI ) A
Ragshing 1 lg ‘ [ 3¢ Okﬁf’;\; i

Gl
i A \'! Y &




The positive sequence impedance of an equipment is the impedance offered by the
equipment to the flow of positive sequence currents.

4. Draw the connection of sequence networks for a double line-to-ground fault at the
terminals of an unloaded generator.

Tar_, =
+ Taq, —
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Fig F1 - Connection of the sequence
Networks of an unloaded generator for
A double line to-ground fault on phase b and ¢

5. Draw the connection of sequence networks for line-to-line fault without fault impedance.
Tay 5 Tq,= -Iay

Fig F 2: Connection of the sequence networks
For a line-to-line fault in power system.
6. Draw the connection of sequence networks for double line-to-ground fault without fault
impedance.
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Fig F 3: Connection of the sequence Networks for a double line-to-ground fault



7. Draw the connection of sequence networks for in-to-ground fault through impedance Z;
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Fig F 4: Connection of sequence networks for
Line-to-line fault through impedance Z;

8. Draw the connection of sequence networks for double line-to-ground fault through an
impedance Z;
3 =f

Fig F5: connection of sequence networks for a double Line-to-ground fault through an
impedance



2. Determine the fault current and MVA at faulted bus for a line to ground (solid) fault at
bus 4 as shown in Fig.2

y @ Tl @ L ® T2®
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G, G2: 100 MVA, 11kV, X"+ X = 15%, X°= 5%, X, = 6%
Ty T2 1100 MVA, 11kV/220 KV, Xyjeax = 9%

Lyl : X=X =10%, X°= 10% on base of 100 MVA. Consider a fault at phase a'.

(16)
3. Asingle line to ground fault occurs on bus 4 of the system shown in Fig.3
(i) Draw the sequence networks and (12)
(ii) Compute the fault current. (4)

£ @ @? | O T C[J G2 ¥
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Gen 1and 2 : 100 MVA, 20kV; X = XF;_gO°/f ; Xo=4%; X, = 5%.

Transformer 1 and 2 : 100 MVA 20/345 KV; Xieakage = 8% on 100 MVA
Tr. Line : X = X = 15% Xo = 50% on a base of 100 MVA, 20 kV.

1 )t—\ll

4.. Draw the Zero sequence diagram for the system whose one line diagram is shown in fig
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5. Two synchronous machines are connected through three-phase transformers to the

transmission line as given below in Fig. 5. The ratings and reactance of the machines
and transformers are

Machines 1 and 2 : 100 MVA, 20 Kv; X"y= X 1= X, =20%

Xo e 4%‘; Xn = 5%.

Transformers T1and T2 : 100 Mva, 20y/345 YKV ; X= 8%
Both transformers are solidly grounded on two sides. On a chosen base of 100 MVA, 345
kV in the transmission line circuit the line reactance are X; =X, = 15% and X, = 50%.
The system is operating at nominal voltage without prefault currents when a bolted (Z; =
0) single line-to-ground fault occurs on phase A at bus (3) Using the bus impedance
matrix for each of the three sequence networks, determine the sub transient current to
ground at the fault. (16)
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Fig.5
6. Determine the positive, negative and zero sequence networks for the system shown in
Fig. 6. Assume zero sequence reactance for the generator and synchronous motors as
0.06 p.u. current limiting reactors of 2.5 Q are connected in the neutral of the generator
and motor No.2 The zero sequence reactance of the transmission line is j 300 Q.
(10)



1. Derive swing equation used for stability studies in power system. (16)

2. Explain the modified Euler method of analyzing multi machine power system for stability
with a neat flow chart. (16)

3. (i) Derive swing equation for a synchronous machine. (8)
(i) A 50 H. generator is delivering 50% of the power that it is capable of delivering
through a transmission line to an infinite bus. A fault occurs that increases the reactance

between the generator and the infinite bus to 500% of the value before the fault. When
the fault is isolated, the maximum power that can be delivered is 75% of the original
maximum value. Determine the critical clearing angle for the condition described.
(8)
4. Find the critical clearing angle for clearing the fault with simultaneous opening of the
breakers 1 and 2. The reactance values of various components are indicated on the
diagram. The generator is delivering 1.0 p.u. power at the instant preceding the fault. The

fault occurs at point p as shown in the figure.
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5 In the system shown in Fig. 5 a three phase static capacitive reactor of reactance 1 p.u.
per phase in connected through a switch at motor bus bar. Calculate the limit of steady
state power with and without reactor switch closed. Recalculate the power limit with
capacitance reactor replaced by an inductive reactor of the same value. (16)
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Fig.5
Assume the internal voltage of the generator to be 1.2 pu. and motor to be1.0 p.u.
6. Describe the Runge-Kutta method of solution of swing equation for multi-machine
systems. (16)
7. (i) Derive the swing equation of a synchronous machine swinging against an infinite bus.
Clearly state the assumption in deducing the swing equation. (10)
(i) The generator shown in Fig. 7 is delivering power to infinite bus. Take Vi = 1.1 p.u.

Find the maximum power that can be transferred when the system is healthy.
(6)

i0.4 p.u. )
P_~1i p.u. v - 1 Infinitc bus
— ol -c;-la-—-s e e
e - $ st £ O léﬂﬁ p.u.

)_{mg,{ p-u. aj‘{).é p-u.
Fig. 7



9. (i) A 2-pole 50 Hz 11KV turbo alternator has a ratio of 100 MW, power factor 0.85
lagging. The rotor has a moment of inertia of 10,000 kgm®. Calculate Hand M. (6)
(ii)A three phase fault is applied at the point P as shown below. Find the critical clearing
angle for clearing the fault with simultaneous opening of the breakers 1 and 2. The
reactance values of various components are indicated in the diagram. The generator is

delivering 1.0 p.u. power at the instant preceding the fault. (10)
}05
¥
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10. Describe the equal area criterion for transient stability analysis of a system. (16)
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19. Quiz Questions .

Objective type questions

1.

Under no load conditions the current in a transmission line is due to.

a) Corona effects
b) Capacitance of the line
<) Back flow from earth

d) None of the above

In the short transmission line which of the following is used?

a) 7t - Model

b) T — Model

<) Both (a) and (b)
d) None of the above

In the short transmission line which of the following is neglected?

a) I’ R loss

b) Shunt admittance
<) Series impedance
d) All of the above

Which of the following loss in a transformer is zero even at full load?

a) Eddy current

b) Hysteresis

<) Core loss

d) Friction loss

The transmission line conductors are transposed to
a) Balance the current

b) Obtain different losses

<) Obtain same line drops

d) Balance the voltage

[Ans.: 1(b), 2(a), 3(b), 4(d), 5(c)]



OBJECTIVE TYPE QUESTIONS

1. When a 1-phase supply is across a l-phase winding, the nature of the
magnetic field produced is

a) Constant in magnitude and direction
b) Constant in magnitude and rotating at synchronous speed
c) Pulsating in nature
d) Rotating in nature
2. The damper windings are used in alternators to
a) Reduce eddy current loss
b) Reduce hunting
c) Make rotor dynamically balanced
d) Reduce armature reaction

3. The neutral path impedance Zn is used in the equivalent sequence network

models as
a) Zn2
b) Zn
c) 3 Zn

d) An ineffective value
4. An infinite bus-bar should maintain
a) Constant frequency and Constant voltage
b) Infinite frequency and Infinite voltage
c) Constant frequency and Variable voltage
d) Variable frequency and Variable voltage
5. Voltages under extra high voltage are
a) IKV & above
b) 11KV & above
c) 132 KV & above

d) 330 KV & above
[Ans.: 1(c), 2(b), 3(c), 4(a), 5(d)]



Power System Stability Objective Questions

1. Steady state stability of the power system is improved by
a) Reducing the fault clearance time

b) Using the double circuit line instead of single circuit line
¢) single pole switching

d) decreasing generator inertia

B

2. Equal area criteria gives the information regarding
a) Stability region

b) Absolute Stability

¢) Relative Stability

d) Swing Curves

B

3. Which one of the following is true

a) Steady State Stability limit is greater than Transient Stability limit
b) Steady State Stability limit is equal to Transient Stability limit

¢) Steady State Stability limit is lee than Transient Stability limit

d) None of the above

A

4. The stability of the power system is not affected by:
a) Generator reactance

b) Line reactance

c) Excitation of the generator

d) Line losses

Cage

D

5. For stability and economic reason we operate the transmission line with power angle in the range of:
a) 10° to 25°
b) 30° to 45°
c) 60° to 75°
d) 65° to 80°

gt

B

6. The steady state stability of the power system can be improved by:
a) Using machines of high impedance

b) Connecting transmission line in series

¢) Connecting transmission in parallel

d) Reducing the excitation of the machines

C

7. The transfer of power between two stations is maximum when the phase angle displacement between
the voltages of the two stations is
a) Zero



b) 90°
c) 1200
d) 180°

g

B

8. The inertia of two group of machines which swing together are M1 and M2. The inertia constant of the
system is:

a) M1-M2

b) M1+M2

c) M1IM2/(M1+M2)

d) M1/M2

gt

C

Power System Stability Objective Questions 2

1. The Critical Clearance time of a fault in the power system is related to
a) Reactive power limit

b) Short Circuit limit

c) Steady state stability limit

d) Transient stability limit

gt

D

2. The equal area criteria of stability is used for:
a) no load on the busbar

b) One machine and infinite busbar

¢) More than one machine and infinite busbar
d) None of the above

g

B

3. If the torque angle of the alternator increases indefinitely the system will show:
a) Steady state stability limit

b) Transient state stability limit

c) Instability

d) None of the above

C

4. The steady state stability of the power system can be improved by:

a) Increasing the number of parallel lines between the transmission points
b) Connecting capacitors in series with the line

¢) Reducing the excitation of the machines

d)Bothaand b

gt

D

5. The transient stability limit of the power system can be increased by introducing:
a) Series Inductance
b) Shunt Inductance



¢) Series Capacitance
d) Shunt Capacitance

C

6. The use of high speed breakers can:
a) Increase the transient stability

b) Decrease the transient stability

¢) Increase the steady state stability

d) Decrease the steady state stability

A

7. The inertia constant of the two machines which are not swinging together are M1 and M2. The equivalent
inertia constant of the system is:

a) M1-M2

b) M1+M2

¢) M1IM2/(M1+M2)

d) M1IM2/(M1-M2)

A

8. If a generator of 250MVA rating has an inertia constant of 6MJ/MVA, its inertia constant on a 100MVA
base is:

a) 15 MJ/MVA

b) 10.5 MJ/MVA

c) 6 MJ/MVA

d) 2,4 MJ/MVA

A
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Short Questions & Answers:

UNIT -1 - THE POWER SYSTEM - AN OVER VIEW AND MODELLING

. What is single line diagram?

What are the components of power system?

: Defiﬁe per unit value.

What is the need for base values?
Write the equation for converting the p.u. impedance expressed in one base to another.

What are the advantages of per-unit computations?
If the reactance in ohms is 15 ohms, find the p.u. value for a base of 15 KVA and 10 KV.

A generator rated at 30 MVA, 11 kV has a reactance of 20%. Calculate its p.u.
Reactance’s for a base of 50 MVA and 10kV.
What is impedance and reactance diagram?

10.What are the factors that need to be omitted for an impedance diagram to reduce it to a

reactance diagram?

11.What is a bus?

12.What is bus impedance matrix?

13.What are sequence impedance and sequence networks?

PART - B

1. Draw the reactance diagram for the power system shown in Fig.1. Neglect resistance and
use a base of 100 MVA, 220 kV in 50 Q line. The ratings of the generator, motor and
transformer are given below.



20. Tutorial Problems

Tutorial class-1

1. Draw the reactance diagram for the power system shown in Fig.1. Neglect resistance and
use a base of 100 MVA, 220 kV in 50 Q line. The ratings of the generator, motor and
transformer are given below.
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Fig. 1
Generator: 40 MVA, 25 kV, X" = 20%
Synchronous motor : 50 MVA, 11 kV, X" = 30%
Y — Y Transformer : 40 MVA, 33/220 kV, X = 15%
Y - A 30 MVA, 11/220 kV, (AY), X =15% (16)

2. Draw the structure of an electrical power system and describe the components of the system
with typical values (16)
3. Obtain the per unit impedance (reactance) diagram of the power system shown in Fig.3

? 'E—D_\-U-[g{}— E
T A Q/\f’; s >3 Tg

Fig. 3
One-line representation of a simple power system.

Generator No. 1: 30 MVA, 10.5 kV, X" = 1.6 Ohm

Generator No. 2: 15 MVA, 6.6 kV, X’ = 1.2 Ohm

Generator No. 3: 25 MVA, 6.6 kV, X" = 0.56 Ohm

Transformer T, (3phase) : 15 MVA, 33/11 kV, X = 15.2 Ohm per phase on HT side
Transformer Tz (3phase) : 15 MVA, 33/6.2 kV, X = 16 Ohm per phase on HT side
Transmission line : 20.5 Ohm/phase

Load A : 15 MW, 11kV, 0.9 p.f. lagging

Load B : 40 MW, 6.6 kV, 0.85 lagging p.f. (16)
4. Explain the modeling of generator, load, transmission line and transformer for power flow,
short circuit and stability studies. (16)

5. Choosing a common base of 20 MVA, compute the per unit impedance (reactance) of the
components of the power system shown in Fig.5 and draw the positive sequence
impedance (reactance) diagram.
672,
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Tutorial Class-2
1. Derive load flow algorithm using Gauss — Seidel method with flow chart and discuss the

advantages of the method. (16)
2. Derive load flow algorithm using Newton-Raphson method with flow chart and state the

importance of the method. (16)

3. Explain clearly the algorithmic steps for solving load flow equation using Newton — Raphson
method (polar form) when the system contains all types of buses. Assume that the
generators at the P-V buses have adequate Q Limits. (16)

4. Explain the step by step procedure for the NR method of load flow studies. (16)

5. Find the bus admittance matrix for the given network. Determine the reduced admittance

matrix by eliminating node 4. The values are marked in p.u. (16)
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6. Find the bus impedance matrix for the system whose reactance diagram is shown in fig. All
the impedances are in p,u. (16)

© 1 50.25 }—[f,?g;"-"{@

3 1.25
] j1.0 - Reference bus
7. (i) Derive the power flow equation in polar form. (8)
(ii)Write the advantages and disadvantages of Gauss-Seidel method and
Newton-Raphson method. (8)
8. The parameters of a 4-bus system are as under:
Bus code Line impedance Charging admittance
(pu) (pu)
1-2 0.2+j0.8 j0.02
2-3 03+j0.9 j0.03
2-4 0.25+ 1.0 j0.04
3-4 02 +j0.8 j0.02
1-3 0.1+j0.4 j0.01
Draw the network and find bus admittance matrix. (16)
9. With a flow chart, explain the NR Iterative method for solving load flow problem. (16)

10. (i) Compare Gauss-Seidel method and Newton-Raphson method of load flow studies (6)
(i) Fig.12 shows a three bus power system.
Bus 1 : Slack bus, V= 1.05/0°p.u.
Bus2:PVbus,V=1.0p.u. Pg=3p.u.
Bus 3 : PQbus, Pi=4 p.u., Q=2 p.u.
Carry out one iteration of load flow solution by Gauss Seidel method. Neglect limits on

reactive power generation. 10)
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1. A generator is connected through a transformer to a synchronous motor the sub transient
reactance of generator and motor are 0.15 p.u. and 0.35 p.u. respectively. The leakage
reactance of the transformer is 0.1 p.u. All the reactances are calculated on a common base. A
three phase fault occurs at the terminals of the motor when the terminal voltage of the generator
is 0.9 p.u. The output current of generator is 1 p.u. and 0.8 p.f. leading. Find the sub transient
current in p.u. in the fault, generator and motor. Use the terminal voltage of generator as
reference vector. (16)

2. Explain the step by step procedure for systematic fault analysis using bus impedance matrix.
(16)

Tutorial Class-5

3. A60 MVA, Y connected 11 KV synchronous generator is connected to a 60 MVA, 11/132 KV
A/Y transformer. The sub transient reactance X’q of the generator is 0.12 p.u. on a 60 MVA
base, while the transformer reactance is 0.1 p.u. on the same base. The generator is unloaded
when a symmetrical fault is suddenly placed at point p as shown in Fig. 3 Find the sub transient
symmetrical fault current in p.u. amperes and actual amperes on both side of the transformer.
Phase to neutral voltage of the generator at no load is 1.0 p.u.
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4. A three —phase transmission line operating at 33 KV and having a resistance and reactance
of 5 Ohms and 15 Ohms respectively is connected to the generating station bus-bar through a
5000 KVA step up transformer which has a reactance of 0.05 p.u. Connected to the bus-bars
are two alternators, are 10,000 KVA having 0.08 p.u. reactance and another 5000 KVA having
0.06 p.u. reactance. Calculate the KVA at a short circuit fault between phases occurring at the
high voltage terminals of the transformers. (16)



21. Known gaps

Known gaps:
As per the industry levels the following are the known gaps of the CMPS subject
Which is in the INTU curriculum.

1.The CMPS subject as per the curriculum is not matching with the power Systems applications
2.The subject is not matching with real time applications .

Action taken:

22. Group discussion topics.

To be attached.

23.References, Journals, websites and E-links
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24.0Quality Control Sheets

To be attached



25. STUDENT LIST
Class / Section: EEE 3yr/llsem

26.Group-Wise students list for discussion topics

GROUP1

To be attached

GROUP 2

GROUP 4

GROUP 5
GROUP 6



GROUP 7

GROUP 8
GROUP 9

GROUP 10

Closure Report:
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Total Number of classes planned

Total Number of classes actually taken

Total Number of students attended for the internal exam
Total Number of students attended for the external exam
Total number of students passed the exam

Pass percentage

- 60
- 75









